SPENCER: Self-Adaptive Model Distillation for
Efficient Code Retrieval

Wenchao Gu, Zongyi Lyu, Yanlin Wang, Hongyu Zhang, Cuiyun Gao, Michael R. Lyu

Abstract—Code retrieval aims to provide users with desired code snippets based on users’ natural language queries. With the
development of deep learning technologies, adopting pre-trained models for this task has become mainstream. Considering the
retrieval efficiency, most of the previous approaches adopt a dual-encoder for this task, which encodes the description and code
snippet into representation vectors, respectively. However, the model structure of the dual-encoder tends to limit the model’s
performance, since it lacks the interaction between the code snippet and description at the bottom layer of the model during training. To
improve the model’s effectiveness while preserving its efficiency, we propose a framework, which adopts Self-AdaPtive Model
Distillation for Efficient CodE Retrieval, named SPENCER. SPENCER first adopts the dual-encoder to narrow the search space and
then adopts the cross-encoder to improve accuracy. To improve the efficiency of SPENCER, we propose a novel model distillation
technique, which can greatly reduce the inference time of the dual-encoder while maintaining the overall performance. We also
propose a teaching assistant selection strategy for our model distillation, which can adaptively select the suitable teaching assistant
models for different pre-trained models during the model distillation to ensure the model performance. Extensive experiments
demonstrate that the combination of dual-encoder and cross-encoder improves overall performance compared to solely
dual-encoder-based models for code retrieval. Besides, our model distillation technique retains over 98% of the overall performance

while reducing the inference time of the dual-encoder by 70%.

Index Terms—Code retrieval, Deep learning, Model distillation

1 INTRODUCTION

W ITH the advancement of Internet technology and the
rise of open-source communities, utilizing the web
to search for necessary code has become a prevailing trend
among developers [1], [2]. A significant challenge for the
effective search lies in the semantic gap between human
natural language and programming languages. To mitigate
the gap, extensive efforts [3], [4], [5] have been devoted
to accurately retrieve the required code through natural
language.

With the rapid development of neural network tech-
nology and pre-training methods, fine-tuning pre-trained
code-based models has become the prevailing approach in
the code retrieval task. Most of pre-trained model based
approaches adopt the dual-encoder [6], [7]. As shown in
Fig. 1, code snippets and natural language-based descrip-
tions are encoded separately by two independent encoders
in the dual-encoder based approaches [6], [7]. The similarity
between the encoded representation vectors of the code
and description is then computed using cosine similarity.

o Wenchao Gu and Michael R. Lyu are with the Department of Computer
Science and Engineering, The Chinese University of Hong Kong, Hong
Kong, China.

E-mail: wegu@cse.cuhk.edu.hk, lyu@cse.cuhk.edu.hk

o Zongyi Lyu and Cuiyun Gao are with the School of Computer Science and
Technology, Harbin Institute of Technology, Shenzhen, China.

E-mail: 200110118@stu.hit.edu.cn, gaocuiyun@hit.edu.cn

e Yanlin Wang is with the Software Engineering School, Sun Yat-sen
University, Zhuhai, China.

E-mail: yanlin-wang@outlook.com

e Hongyu Zhang is with the School of Big Data and Software Engineering,
Chongqing University, Chongging, China.

E-mail: hongyujohn@gmail.com

Manuscript received September 2023

[0,1]

Cosine Similarity
[0,1]

1
1
1
1
i
f i
1
1
1
1
1
1

[Code Vector] [
i
Code Encoder] [Query Encoder [Cross Encoder]
i i i i
Code] [Query [Code] [Query]

Dual-encoder Architecture Cross-encoder Architecture

Fig. 1. lllustration of the code retrieval approach with dual-encoder
architecture and cross-encoder architecture.

However, the lack of interaction between the code snippet
and description at the bottom layer of the model during the
training limits the model performance [8].

To involve the interaction between the code snippet
and description, one commonly used solution is the cross-
encoder [9]. As shown in Fig. 1, the architecture incorporates
both code snippets and natural language descriptions as
a single model input. This unified approach generates a
normalized score that evaluates the alignment between the
provided code and its corresponding description, effectively
quantifying their similarity degree. Nevertheless, the cross-
encoder does face efficiency challenges. In contrast to the
dual-encoder, which can compute and store the code’s rep-
resentation vector in advance within a database, the cross-
encoder lacks this precomputation capability. This stems
from the cross-encoder’s reliance on input from both the
query and the code, leading to the recalculation of matching

scores between the query and every code entry in the
database. Therefore, the inference cost associated with the
cross-encoder becomes impractical when dealing with large
code databases.

To obtain the high performance of the cross-encoder as
much as possible while considering the efficiency problem,
we propose a novel framework named SPENCER for the
task of code retrieval. This framework adopts the dual-
encoder initially to select several candidates from the entire
database based on the given query. Once the candidates
are retrieved, the query is sequentially combined with each
candidate and passed into the cross-encoder. This process
calculates the matching score for each selected pair and re-
ranks the order of candidates. The adoption of this approach
can greatly reduce the inference cost of the cross-encoder
from the entire database to a small fixed number.

Since the primary purpose of the dual-encoder within
our framework is to select a fixed number of candidates, it
is sufficient to ensure that the correct answer is among the
returned candidates. Nevertheless, employing a pre-trained
model as the dual-encoder comes with a high computation
cost due to its large size. We argue that such a large model
might not be necessary for the dual-encoder’s function and
the approaches for reducing the dual-encoder’s model size
while simultaneously upholding its performance within this
framework still remain unexplored. To address this prob-
lem, we propose a novel model distillation approach for the
dual-encoder on the query side. The proposed model distil-
lation approach makes our distilled query encoder learn the
similarity in both single modality and dual modality from
the teacher dual-encoder without relying on ground-truth
information. Such a model distillation approach enables us
to achieve an efficient and accurate dual-encoder without
sacrificing too much performance.

To further improve the performance of distilled query
encoder, we propose a self-adaptive teaching assistant se-
lection approach for our model distillation. This approach
can dynamically select suitable teaching assistants for the
distilled query encoder during the model distillation pro-
cess.

We conducted comprehensive experiments to validate
the effectiveness of our proposed framework, incorporating
the proposed model distillation approach. The results of
the experiments demonstrate the efficiency of the frame-
work in significantly improving performance with consid-
erable computation costs. Our model distillation approach
is highly effective, reducing the inference time by around
70% of the dual encoder model while preserving more than
98% of overall performance.

We summarize the main contributions of this paper as
follows:

o In this study, we present a framework that leverages
both the dual-encoder and cross-encoder compo-
nents of pre-trained models for the code retrieval
task. The experimental results demonstrate that this
integrated approach can achieve the high accuracy
associated with the cross-encoder.

e We present a novel approach to model distillation for
the dual-encoder within a unified framework. Our
method greatly reduces the parameters of the dual-

2

encoder while preserving the most performance of
the unified framework.

e We present a novel approach to select the assist
model during the process of model distillation,
which can adaptively select the suitable assistant
model for different pre-trained models during train-
ing. This adaptive selection process aims to enhance
performance and achieve better overall results.

The remainder of this paper is structured as follows:
Section 2 provides an overview of the architecture of our
proposed SPENCER, including the design of the unified
framework, and the design of the model distillation ap-
proach with the teaching assistant. Section 3 describes our
experimental setup, including the datasets used, evaluation
metrics, and implementation specifics. In Section 4, we
present the experimental results and provide our analysis.
In Section 5, we discuss the threats to the validity of our
experiments. Section 6 discusses the related work on code
retrieval and knowledge distillation, while Section 7 con-
cludes the paper.

2 METHODOLOGY

In this section, we first present the principles of our pro-
posed framework. Then we explain the training strategy
for both the dual-encoder and cross-encoder. Next, we will
introduce the model distillation design for the dual-encoder.
Finally, we will introduce our self-adaptive approach for
identifying a suitable teaching assistant during the model
distillation process.

2.1 Overview

Fig. 2 illustrates the overall framework of our approach. In
this framework, both the dual-encoder and cross-encoder
are trained in advance. After training, code snippets inside
the code database are encoded into code representation vec-
tors using the code-encoder, which is a dual-encoder. These
code vectors are then pre-stored in the code database. When
a user query is received, the query encoder, which is another
kind of dual-encoder, processes the query and generates a
query representation vector. To find the most relevant code
candidates, the cosine similarity between the query vector
and each code vector in the database is calculated and sorted
in descending order. The top K code candidates with the
highest cosine similarity would be retrieved. Each of these
candidates is then combined with the original query input,
resulting in a new concatenated input. These new inputs
are then fed into the cross-encoder, and the code candidates
are re-ranked based on a descending sort of matching scores
obtained from the cross-encoder. Finally, the top K re-ranked
code list is concatenated with the remaining part of the code
list from the dual-encoder. This combined list is considered
the final code list and returned to the user.

2.2 Dual-Encoder Training

Under our proposed framework, the functionality of the
dual-encoder is to select the top K code candidates that
are most likely to contain the correct answer. There are
dual-encoders in our framework: the query encoder and the

I:> o -
Query Vector :
User Distilled Query Encoder Cosine |
Similarity 1
= a1 I
= : L
a1
Code o
Database Code Encoder C0de Vector

Rough Sorting for Code Candidates

Concatenation with Top
K Code Candidates

Ranked Code List

—_———

J

[
-
— |

l:J

[
Re-Ranked

Top K Code
Final Code List

=

Cross Encoder

1

] —

Top-K Results Re-ranking

Fig. 2. The overall framework of SPENCER. Code retrieval under this framework can be split into two steps: rough sorting for code candidates and
top-K results re-ranking. Rough sorting for code candidates: the code snippets in the code database and the given query are embedded into
vectors via the dual-encoder, respectively. Then the cosine similarity between the query vector and code vector will be calculated and the code
candidates will be sorted in a descending order according to this similarity. Top-K results re-ranking: The top-K code snippets in the previous code
candidates list are concatenated with the given query and the new input will be fed into cross-encoder. The top-K results in the code candidates list

will be re-ranked according to the match score from the cross-encoder.

code encoder. Both of these encoders utilize Transformer-
based pre-trained models. To prepare the input data for the
encoders, the queries and code snippets are tokenized into
sequences of tokens. For each sequence, a special token,
denoted as [CLS], is added at the beginning, resulting in
a token sequence with the form [C'LS|, [Tokl], [Tok2],....
During the training process of the dual-encoders, the token
sequence of the code and the query are fed into the code
encoder and the query encoder, respectively. We extract
the hidden vectors of the first token from the last layer in
the query encoder and the code encoder, which serves as
the code representation vector and the query representation
vector, respectively. To align the code vectors and query
vectors effectively, we employ contrastive learning during
the training phase. The loss for the dual-encoder training
consists of three components: the contrastive loss for the
code modality, the contrastive loss for the query modality,
and the contrastive loss for the cross-modality. The con-
trastive loss for the code modality is formed as follows:

where ¢ is the positive sample of the i-th code snippet, ¢
is the negative sample of the j-th code snippet, n is the size of
training batch and 7 is the temperature parameter. We adopt
different mask to encoder with the same input to generate
the positive samples, which is followed by SimCSE [10].
Similarly, the contrastive loss for the query modality is:

le

where ¢ is the positive sample of the i-th description, q;
is the negative sample of the j-th description, n is the size

exp(c; - ¢t /1)
j 1,i#j5 exp(cl Cj /T)

M

exp(gi - 4f /7)
j=1,i#j exp(ql q] /T)

@)

of training batch and 7 is the temperature parameter. The
method of positive sample generation is the same as the
previous one.

The contrastive loss for the cross modality is

le

where c¢; is the i-th code snippet, g; is the i-th description,
n is the size of training batch and 7 is the temperature
parameter. In the contrastive loss for the cross modality,
the corresponding description is adopted as the positive
sample for the given code and the unmatched description
is adopted as the negative sample for the given code.

The total loss for the dual-encoder training is shown as:

exp C; - QZ/T)
j=1,i#j 6.’1)])(01 qJ/T)

®)

L=Lc+ Lo+ LD (4)

2.3 Cross-Encoder Training

In this framework, the role of the cross-encoder is to re-
rank the selected code candidates from the dual-encoder,
aiming for accuracy improvement. For the cross-encoder,
the code and query will be firstly tokenized into a token
sequence, respectively. Then these two token sequences
will be combined into a single token sequence. [CLS]
will be added at the beginning of the toke sequence and
[SEP] will be added between the code token sequence
and query token sequence. The token sequence will be
[CLS], [Code_tokl], ..., [SEP], [Query_tokl], The cross-
encoder is trained using the cross-entropy loss, which is
defined as follows:

n

— (ylogij + (1 — y)log(1 — 7)) ®)

i=1

ﬁ:

Query Encoder Distillation

@t

Teacher Model

Original Query "'?/47 Original Code
Encoder Code to Query R0y Encoder
(Original) ‘9/,&,
Teaching Assistant 4/{9/) l
Model 0)80,
Query Modallty
Allgnment (o)
0. «—— — L
Student Model o A
. . ; . R i Query to Query Query to Query Distillated Code to Query
Distillation with Teaching Assistant (Original) (Distillated) Query Encoder (Distillated)

A
/‘A 0

Fig. 3. The process of model distillation within our framework. There are two main components in our model distillation, which are Distillation with
Teaching Assistant and Query Encoder Distillation. Distillation with Teaching Assistant: To alleviate the learning problem brought by the large
size gap between the large teacher model and the small student model, a middle teaching assistant model will be trained at first. Then both the
teacher model and teaching assistant model will be utilized for the student model training. The details of the selection strategy for the teaching
assistant model will be introduced in the following section. Query Encoder Distillation: A small query encoder will be distillated from the original
query encoder with the training loss of both single modality and dual modality. The single modality loss aims to align the output of the distillated
query encoder to the output of the original query encoder. The purpose of the dual-modality loss is to provide the relative positional relationship
between the output from both the original query encoder and code encoder for the distillated query encoder learning.

where y is the ground-truth label which indicates whether
the given pair of query and code is matched and ¢ is the
normalized prediction score from the cross-encoder.

2.4 Query Encoder Distillation

In the dual-encoder, the code encoder’s primary role is
to encode code snippets into code representation vectors
during the construction of the code database. Once this
encoding process is complete, the code encoder remains
inactive until new code snippets are added to the database.
Unlike the code encoder, the query encoder will be invoked
when the system receives the query from the user. Since
the model distillation will unavoidably lead to performance
degradation, it is better to keep the model unchanged if
the model will not affect the efficiency of the entire system.
Therefore, our focus shifts to the model distillation for the
query encoder. Unlike previous approaches that attempted
to distill the distribution of logits output from the model in
the code area, our objective is to distill the high-dimensional
spatial projection capabilities of pre-trained models into
smaller models. Our goal is to preserve the performance
of the pre-trained model as much as possible. To achieve
this, we propose a novel distillation loss for our model
distillation. Fig. 3 illustrates the process of query encoder
distillation. The distillation loss comprises two components:
one for the query modality and another for the dual modal-
ity. The distillation loss for the query modality is outlined
below:

n

EQZZ(l— Gi " Qi)

T RTRRTISII (6)
= @l flall

where ¢; is the i-th code representation vector from the
target model, which is the model needs to be distilled, and

g; is the i-th code representation vector from our distilled
model. Since we hope that the representation vector from
the distilled model can be identical to the representation
vector from the target model, the cosine similarity between
these two representation vectors and align the similarity
with 1.

However, the performance of the distilled model will
drop significantly if the distilled model capacity has a large
gap with the target model capacity. To tackle this issue,
the distillation loss of dual-modality is introduced and it
is shown below:

Gi - ¢
Z'chn ARIEk @

||QZ|| HQ7,HHCZH

where ¢; is the i-th code representation vector from the
original code encoder, g; is the i-th query representation
vector from the target query encoder, and §; is the i-th query
representation vector from the distillated query encoder.
The cosine similarity serves as the primary metric in code
retrieval. By considering the similarity of the dual modality
as part of the training target, we preserve the relative
positional relationship between queries and codes, leading
to enhanced performance of the distilled model.

In contrast to the conventional distillation approach used
in classification tasks, where the ground-truth labels serve as
the training target, our findings indicate that incorporating
ground-truth labels during the query encoder distillation
does not contribute to the enhancement of model perfor-
mance; on the contrary, it negatively impacts the perfor-
mance. The specifics will be discussed in the upcoming
section.

Algorithm 1 Algorithm for Self-Adaptive Teaching Assis-
tant Selection

Input: CMr: Original teacher model for the code encod-
ing, @M: Original model for the query encoding, P: The
Reduced parameters for every step, T: Threshold for the
performance drop
Output: C Mgy dens: Student model for the code encoding
CMA1 — CMT
CM 42 < ModelCompression(C My, P)
CM 42 < ModelDistillation(C M 41, QM)
CMg <+ CMyo
Scorer = Validation(C My, QM)
Scoreg = Validation(CMg, QM)
while Scorer — Scores < T do
CMrempr < ModelCompression(CM 42, P)
CMremp2 < ModelCompression(CM 42, P)
CMrempr < ModelDistillation(C'M 41, QM)
CMremp2 < ModelDistillation(C'M 42, QM)
Score a1 = Validation(CMremp1, QM)
Score g2 = Validation(C Mremp2, QM)
if Scorea1 > Scoreyo then
CMAZ — CMTempl
Scoreg = Score a1
else
CMAl «— CMA2
CMA2 < CMTempl
Scoreg = Score s
if Scorer — Scoreg < T then
CMg <+ CMyo
return C Mg

2.5 Self-Adaptive Teaching Assistant Selection

Addressing the challenge of a large capability gap between
teacher and student models, a popular approach involves
introducing a teaching assistant model. This intermediary
model, with a size between that of the teacher and stu-
dent models, helps bridge the knowledge gap. Initially, the
teaching assistant model learns from the teacher model,
converting complex knowledge into a more accessible form.
Subsequently, the student model learns from the teach-
ing assistant model, enhancing its grasp of the teacher’s
knowledge. However, determining the optimal size for the
teaching assistant model poses difficulties. The vast search
space and associated computational costs make exhaustive
exploration impractical. Additionally, even models with the
same architecture may require different-sized teaching assis-
tant models due to varying pre-trained models. Therefore,
selecting the appropriate teaching assistant model for differ-
ent pre-trained models becomes a crucial challenge.

To address this problem, we propose a novel approach
for selecting the teaching assistant model during the model
distillation process. Our method dynamically adjusts the
teaching assistant model to find the most suitable one.
The detailed steps of our proposed approach can be found
in Algorithm 1. In Algorithm 1, ModelCompression(M, P)
indicates the model compression operation for the model
M with reduced parameter P. ModelDistillation(M;, M)
indicates the model distillation operation from the M; with
the reference of Ms. Validation(M;, Mz) indicates the per-

TABLE 1
Dataset statistics.

Dataset Training Validation Test
Python 412,178 23,107 22,176
Java 454,451 15,328 26,909

formance validation from the model M; and Ms. For the
initialization, we will set the amount of model parameters
to be reduced in each distillation step and train a teaching
assistant model with reduced parameters at first. Subse-
quently, we consider the original teacher model and the
newly distilled teaching assistant as two target models for
the distillation. The distillation process yields two student
models from these targets, which are then compared in
terms of their performance. The student model with supe-
rior performance replaces the teacher model that teaches
the less competent student. This replacement is necessary
because the teacher model exhibiting poor teaching ability
is identified through this comparison. The two new target
models (the better student model and the original teacher
model) are then used for distilling a new student model.
This loop of distillation continues until the model reaches
its minimum size, or the performance difference between
the student model and the original model exceeds a preset
threshold value. The final student model, resulting from this
iterative process, will be preserved and employed as the
code encoder in our proposed framework.

By following this approach, we can select the suitable
teaching assistant model for different pre-trained models to
further improve the performance of the distilled model.

3 EXPERIMENTAL SETTINGS
3.1 Datasets

The dataset we utilized to evaluate the proposed framework
is initially from CodeBERT. CodeBERT selects the descrip-
tions and code snippets from CodeSearchNet. It makes
matched code snippets and descriptions as positive pairs
and makes the unmatched code snippets and descriptions
as negative pairs. We directly utilize the dataset from the
CodeBERT to train the cross-encoder. As for the training of
dual-encoder in our proposed framework, we reorganized
the dataset from CodeBERT. The reason why we reorganized
the dataset is the difference in training mechanism between
the dual-encoder and cross-encoder. Cross-encoder treats
the code retrieval task as the classification task and the
inputs are the pairs of code snippets and queries. On the
contrary, the dual-encoder treats the code retrieval task as
the data projection task which projects the code snippets
and queries into the same high dimensional space. Similar
code snippets and queries should be close to each other
and dissimilar code snippets and queries should be far from
each other. Due to the difference in mechanisms, the dual-
encoder only accepts the data from code modality or query
modality. To address this different data format requirement,
we only keep the positive pairs of code snippets and queries
and remove all the negative pairs from the dataset. The
reason we remove the negative pairs is that the training
of dual-encoder needs the label for the alignment of code

snippets and queries but negative pairs cannot provide such
labels. Table 1 shows the statistics of the datasets.

3.2 Baselines

We select three state-of-the-art Transformer-based pre-
trained models in the code area to validate the effectiveness
of our proposed framework, which are shown below:

e CodeBERT is a pre-trained model based on a Trans-
former with 12 layers. It combines code snippets and
descriptions, converts them as token sequences, and
utilizes them as the input of the model.

o GraphCodeBERT is another pre-trained Transformer
based model. Unlike CodeBERT which only utilizes
the token sequence as the input, GraphCodeBERT
also considers the data flow of code snippets and
utilizes it as the additional input.

e CodeT5 is a pre-trained Transformer-based model
with both an encoder and a decoder. CodeT5 is
pre-trained with three identifier-aware pre-training
tasks, which lead to the ability to recover masked
identifiers in the code.

3.3 Metrics

RQF (recall at k) and MRR (mean reciprocal rank) are uti-
lized as the evaluation metrics to evaluate the performance
of our proposed framework. RQk is the metric to evaluate
whether the model can return the correct answer within top
K candidates. It is widely used to evaluate the performance
of the code retrieval models in previous research [11], [12],
[13], [14]. The definition of RQk is shown below:

Q
ROk = —— > " 8(FRankg < k), 8)

IRl =

where () denotes the query set and F'Rank, is the rank of
the correct answer for query ¢. §(Frank, < k) returns 1 if
the correct result is within the top k returning results, other-
wise it returns 0. The higher RQ¥ is, the better performance
the model has.

MRR is a popular metric used in recommendation sys-
tems and it is also widely used to evaluate the performance
in the task of code retrieval [7], [9]:

MRR = — f: !)
Q| = F Rankq

Similar to RQF, a higher MRR indicates better performance.

3.4

In our experiment, we fine-tuned the dual-encoder and
cross-encoder sourced from pre-trained models available in
the public repository. These original encoders are based on
the Transformer model, consisting of 12 layers and 12 heads.
The dimension of the output vectors from the dual-encoder
is 768. CodeBERT and GraphCodeBERT are encode-only
models and CodeT5 is an encoder-decoder model. To ensure
equitable comparison of experimental results, we omitted
the decoder of CodeT5 and exclusively employed its en-
coder. This decision was made because our task focuses
solely on encoding code and queries into representation

Implementation Details

6

vectors. In addition, we set the maximum input length for
our models as 512 and the dropout ratio as 0.2. For model
optimization, we maintained a consistent learning rate of
le-5 across all models. The optimization process employed
the AdamW algorithm [15]. We trained our models on a
server with Tesla A100 and we trained both dual-encoders
and cross-encoders for 8 epochs. The training batch size we
used is 16. An early stopping strategy is adopted to avoid
over-fitting for all models. The training batch size for the
model training is 16.

In each step of the distillation process, three layers were
eliminated. The hyperparameter 7" in our teaching assistant
selection algorithm was set to 0.01.

In our experiment, we partitioned the test dataset into
distinct search pools whose size is 1,000 for evaluation
purposes. The models were evaluated in each pool and the
average results from all the pools are reported in our paper.

4 EVALUATION
4.1 RQ1: The effectiveness of our proposed framework

Table 2 illustrates the experiment results of the overall
performance comparison of different encoders with differ-
ent pre-trained models. Modelpy,; represents the approach
which only adopts the dual-encoder for code retrieval
Modelspencrrnopistill indicates the code retrieval approach
which adopts our proposed framework but the model dis-
tillation part is removed. Modelgspeycer represents the code
retrieval approach that adopts the complete version of our
proposed framework SPENCER.

From the experiment results in Table 2, we can find that
the performance improvement of Modelgspencernonistizn Will
be affected by the selection of the pre-trained model. Specif-
ically, the performance improvement with the pre-trained
model named CodeT5 is around 200% as the improvement
with CodeBERT or GraphCodeBERT on the metric of R@1
on both datasets. Besides, compared to Modelspencernopistill,
we can find that Modelgpgncen can preserve most of the
performance. Specifically, Modelspencer can preserve more
than 98% performance of Modelgspencernopistizz On all the
metrics with both datasets. Here we need to pay attention
that the performance of Modelgpgycer O the metric of R@5 is
even worse than the performance of Modelpya:. The reason
is that the code candidates are recalled by the dual-encoder
in our proposed framework. Since we set the recall number
as 5 in our experiments, the performance on the metric R@5
is directly determined by the dual-encoder and the cross-
encoder does not make any contribution to the performance
improvement on this metric. The distillation of the model
will lead to the loss of the performance so that the overall
performance of Modelgprycer dropped on the metric R@5.

Table 3 showcases the inference time costs associated
with the query encoder within our proposed framework.
Distilled refers to the inference time cost of the distilled
query encoder, while Original refers to the inference time
cost of the original query encoder. The experimental results
reveal that our distillation approach greatly diminishes the
inference time of the query encoder within our framework
by approximately 70%. These results demonstrate the effec-
tiveness of our proposed distillation methods in enhancing
the model efficiency.

TABLE 2
Results of overall performance comparison with different pre-trained models. The percentage of performance improvement is calculated based on
the performance of the dual encoder. Modelpya: indicates the approach which only adopts the dual-encoder. Modelspencernopistil1 indicates the
approach which adopts SPENCER but the model distillation part is removed. Modelspencer indicates the approach which adopts the complete
version of SPENCER.

Model Python Java

R@1 R@3 R@5 MRR R@1 R@3 R@5 MRR
CodeBERTpya1 0.652 0.839 0.888 0.757 0.533 0.704 0.754 0.633
CodeBERTSpENCERnoDistill 0.714 (19.5%) 0.865 (13.1%) 0.888 (0.0%) 0.798 (15.4%) 0.575 (17.9%) 0.722 (12.6%) 0.754 (0.0%) 0.661 (14.4%)
CodeBERTSspENCER 0.710 (18.9%) 0.857 (12.1%) 0.879 (11.0%) 0.792 (14.6%) 0.569 (16.8%) 0.711 (11.3%) 0.742 ({1.6%) 0.653 (13.2%)
GraphCodeBERTpya1 0.669 0.853 0.901 0.771 0.541 0.712 0.760 0.640
GraphCodeBERTspeNCERnoDistill 0.727 (18.7%) 0.875 (12.6%) 0.901 (0.0%) 0.809 (14.9%) 0.590 (19.1%) 0.750 (15.3%) 0.760 (0.0%) 0.671 (14.8%)
GraphCodeBERTspeNCER 0.721 (17.8%) 0.867 (11.6%) 0.891 ({1.1%) 0.802 (14.0%) 0.582 (17.6%) 0.720 (11.1%) 0.749 ({1.4%) 0.664 (13.8%)
CodeT5pual 0.655 0.842 0.892 0.760 0.500 0.681 0.737 0.608
CodeT5SpENCERnoDistill 0.757 (115.6%) 0.880 (14.5%) 0.892 (0.0%) 0.826 (18.7%) 0.587 (117.4%) 0.718 (15.4%) 0.737 (0.0%) 0.664 (19.2%)
CodeT5spENCER 0.751 (114.7%) 0.870 (13.3%) 0.882 (11.1%) 0.819 (17.8%) 0.579 (115.8%) 0.707 (13.8%) 0.726 (1.5%) 0.656 (17.9%)

TABLE 3
Results of inference time cost comparison of the query encoder with
different pre-trained models.

Model Distilled Original Ratio
CodeBERTpython 15.0s 52.2s 28.7%
CodeBERT java 12.4s 42.2s 29.4%
GraphCodeBERTpython 14.2s 51.4s 27.6%
GraphCodeBERT java 12.4s 42.2s 29.4%
CodeT5python 22.0s 69.1s 31.8%
CodeT5java 14.7s 47.8s 30.8%

In summary, SPENCER can effectively improve the code
retrieval performance. Besides, our proposed model dis-
tillation approach can efficiently reduce the 70% inference
time of the query encoder inside our framework while
preserving more than 98% overall performance.

4.2 RQ2: The effectiveness of our distillation approach

In this section, we investigate the effectiveness of various
model distillation approaches for the dual-encoder within
our proposed framework. We explore four variants of the
model distillation methods. The first one, referred to as
Modelprigina1, represents the model without any distillation.
The second one, which is Modelging e, incorporates only the
single modality loss as the distillation method. The third
one, which is Modelp,a;, employs solely the dual modality
distillation method. The forth one is Modelgpgycer, Which
is our proposed distillation approach. And the last one is
ModelspencEr+contra, Which combines our proposed distilla-
tion method with a contrastive loss used in the training of
original models.

Table 4 presents the performance comparison results
of different pre-trained code retrieval models using these
model distillation approaches. Our distillation approach ex-
hibits the best performance across most metrics, confirming
the effectiveness of our proposed dual-encoder distillation
method. Interestingly, we observe that the performance of
the single-modality distillation is generally superior to the
dual-modality distillation in most experimental settings.
This suggests that the student model effectively learns

knowledge from the teacher query encoder by aligning
representation vectors to the teacher model, rather than
focusing on the relative positional relationship between
query and code modalities.

Surprisingly, we find that incorporating the contrastive
loss into the model distillation does not contribute to perfor-
mance improvement; instead, it harms the mode distillation
process. The contrastive loss aims to reduce the distance
between positive pairs of code and query while increasing
the distance between negative pairs, which can be regarded
as providing ground-truth labels during training. The rea-
son for its negative impact on our encoder’s distillation
performance is that the small model has limited ability
to construct a good distribution of representation vectors
in high-dimensional space. This loss interferes with the
learning of the teacher model by the distillation model.

In summary, the distillation with single modality and
dual modality has the best performance among all the
variants. The introduction of constrastive loss into the
model distillation has a negative impact on the distillation
performance.

4.3 The influence of the model size to the performance

Table 5 presents the experimental results on the performance
of various sizes of distilled query encoders with different
pre-trained models. According to the experiment results, the
impact of model distillation on precise ranking is observed
to be more significant than on rough ranking. Specifically,
there is a substantial performance drop in the R@1 met-
ric compared to R@3 and R@5 for models with the same
number of layers. The drop in R@5 is only approximately
35% compared to the drop in R@1. These experiment results
show that our model distillation method has limited impact
on the top K recall ability of the dual-encoder, which indi-
cates that model distillation is feasible for the dual-encoder
within our proposed framework.

Moreover, the performance drop for different pre-trained
models at the same compression ratio varies. For instance,
the performance drop with CodeT5 is much smaller than
other pre-trained models while the model is distilled from
12 layers to 9 layers. Furthermore, different pre-trained

TABLE 4
Results of the dual-encoder performance comparison of different pre-trained models with different model distillation approaches. The best results
are highlighted in bold font.

Model Python Java

R@1 R@3 R@5 MRR R@1 R@3 R@5 MRR
CodeBERToriginal 0.652 0.839 0.888 0.757 0.533 0.704 0.754 0.633
‘CodeBERTsingle 0.625 (14.1%) 0.819 (2.4%) 0.876 ({1.4%) 0.735 (12.9%) 0.509 (14.5%) 0.687 ({2.4%) 0.740 ({1.9%) 0.614 (13.0%)
CodeBERTpua1 0.618 (15.2%) 0.815 (12.9%) 0.872 (}1.8%) 0.730 (3.6%) 0.506 (15.1%) 0.686 (12.6%) 0.739 (2.0%) 0.612 ({3.3%)
CodeBERTspENCER 0.631 (13.2%) 0.824 (}1.8%) 0.879 (}1.0%) 0.740 (12.2%) 0.511 (}4.1%) 0.689 (12.1%) 0.742 (11.6%) 0.615 (]2.8%)

CodeBERTSpENCER+Contra

0.631 (13.2%) 0.823 (11.9%) 0.878 (11.1%) 0.741 (12.1%) 0.487 (18.6%) 0.669 (15.0%) 0.727 (13.6%) 0.596 (15.8%)

GraphCodeBERToriginal 0.853 0.901

GraphCodeBERTsingle
GraphCodeBERTpya1
GraphCodeBERTspENCER

0.771
0.642 (LA.0%) 0.836 (12.0%) 0.889 (J1:3%) 0.750 (12.7%) 0515 (|4.8%) 0.692(12.8%) 0.744 (]2.1%) 0.618 (134%)
0.635 (15.1%) 0.832 (12.5%) 0.886 (11.7%) 0.745 (13.4%) 0.510 (15.7%) 0.688 (13.4%) 0.740 (}2.6%) 0.614 (|4.1%)

0.644 (13.7%) 0.839 (]1.6%) 0.891 (11.1%) 0.753 ({2.3%) 0.522 ({3.5%) 0.697 ({2.1%) 0.749 ({1.4%) 0.624 ({2.5%)

0.541 0.712 0.760 0.640

GraphCodeBERTspeNcER+Contra 0.641 (14.2%) 0.836 (12.0%) 0.889 (11.7%) 0.750 (12.7%) 0.513 (15.2%) 0.690 (13.1%) 0.745 (12.0%) 0.617 (13.6%)

COdeTSDriginal 0842 0892

CodeTbsingle
CodeTbpual
CodeTb5spENCER
CodeT5spENCER+Contra

0.760
0.632 (13.5%) 0.822 ({2.4%) 0.878 (11.6%) 0.741 ({2.5%) 0.480 (14.0%) 0.666 ({2.2%) 0.725 (}1.6%) 0.590 (13.0%)
0.625 (14.6%) 0.820 (12.6%) 0.877 (}1.7%) 0.736 ({3.2%) 0.475 (5.0%) 0.661 ({2.9%) 0.719 (2.4%) 0.586 ({3.6%)
0.639 (12.4%) 0.828 (].1.7%) 0.882 ({1.1%) 0.746 (]1.8%) 0.480 (|4.0%) 0.667 (12.1%) 0.726 (}1.5%) 0.591 (].2.8%)

0.625 (}4.6%) 0.821 (12.5%) 0.877 (11.7%) 0.735 (13.3%) 0.469 (16.2%) 0.660 (13.1%) 0.722 (12.0%) 0.583 ({4.1%)

0.500 0.681 0.737

TABLE 5
Results of the dual-encoder performance comparison of different pre-trained models with different model compression ratio.

Model Python Java

Re@1 R@3 R@5 MRR R@1 R@3 R@5 MRR
CodeBERT121ayers 0.652 0.839 0.888 0.757 0.533 0.704 0.754 0.633
CodeBERTg1ayers ~ 0.648 (J0.6%) 0.836 (10.4%) 0.886 (10.2%) 0.754 (10.4%) 0.524 (J1.7%) ~0.697 (41.0%) 0.749 (10.7%) 0.626 (}1.1%)
CodeBERTe1ayers 0.642 (11.5%) 0.830 (11.1%) 0.882 (10.7%) 0.748 (11.2%) 0.522 (}2.1%) 0.696 (11.1%) 0.748 (10.8%) 0.624 (|1.4%)
CodeBERTs)ayers 0.631 (13.2%) 0.824 (11.8%) 0.879 (11.0%) 0.740 (12.2%) 0.511 (J4.1%) 0.689 (12.1%) 0.742 (11.6%) 0.615 (12.8%)
CodeBERT 1ayer 0.581 (110.9%) 0.786 (16.3%) 0.848 (14.5%) 0.700 (17.5%) 0.469 (112.0%) 0.652 (17.4%) 0.709 (16.0%) 0.578 (18.7%)

GraphCodeBERT151ayers 0.669 0.853 0.901 0.771 0.541 0.712 0.760 0.640

“GraphCodeBERTg1ayers 0.665 (10.6%) 0.849 (10.5%) 0.898 (10.3%) 0.768 (10.4%) 0.535 ({1.1%) 0.708 (10.6%) 0.757 ({0.4%) 0.636 (10.6%)
GraphCodeBERTg1ayers 0.660 (11.3%) 0.845 (10.9%) 0.896 (10.6%) 0.764 (10.5%) 0.533 (}1.5%) 0.706 (10.8%) 0.756 (10.5%) 0.634 (10.9%)
GraphCodeBERTs1ayers 0.641 (14.2%) 0.836 (12.0%) 0.889 (11.3%) 0.750 (12.7%) 0.516 (}4.6%) 0.691 (12.9%) 0.743 (12.2%) 0.619 (3.3%)
GraphCodeBERT11ayer 0.607 (19.3%) 0.810 (15.0%) 0.867 (13.8%) 0.722 (16.4%) 0.483 (110.7%) 0.662 (17.0%) 0.719 (15.4%) 0.589 (18.0%)
CodeT5121ay0rs 0.655 0.842 0.892 0.760 0.500 0.681 0.737 0.608

‘CodeTBorayers ~ 0.654 (J0.2%) 0.840 ({0.2%) 0.890 (10.2%) 0.758 (10.3%) 0.497 (J0.6%) ~0.678 (10.4%) 0.735 (10.3%) 0.606 (10.3%)
CodeT5g1ayers 0.650 (10.8%) 0.835 (10.8%) 0.888 (10.4%) 0.756 (10.5%) 0.491 (11.8%) 0.673 (}1.2%) 0.733 (10.5%) 0.600 (}1.3%)
CodeT5s1ayors 0.639 (12.4%) 0.828 (}1.7%) 0.882 (11.1%) 0.746 (}1.8%) 0.480 (14.0%) 0.667 (}2.1%) 0.726 (11.5%) 0.591 (|2.8%)
CodeT511ayer 0.597 (18.9%) 0.800 (15.0%) 0.858 (13.8%) 0.713 (16.2%) 0.466 (16.8%) 0.654 (}4.0%) 0.717 (12.7%) 0.578 (}4.9%)

models demonstrate distinct performance drop trends with
an increasing model compression ratio. For most distilled
models, the performance drop accelerates when distilling
to 3 layers and becomes considerably larger at 1 layer.
However, the performance drop of CodeT5 increases at a
slower rate compared to other pre-trained models as its
compression ratio increases.

Finally, it’s worth noting that even for the same distilled
model, the performance varies across different datasets.
Specifically, we can find that the performance drop of Code-
BERT which is distilled to 3 layers on the Python dataset is
smaller than the performance drop of it on the Java dataset,
and the experiment results are opposite for the rest of the
distilled pre-trained models.

In summary, the extent of performance degradation dur-
ing model distillation varies greatly based on the choice of
mode compression ratio, the pre-trained models, and the
datasets.

4.4 The impact of different training strategy to the per-
formance with the same model size

Table 6 presents the experiment results for evaluating the
performance of the dual encoder under different training
strategies. The four models compared are Modelgriginal,
which represents the original query model with 12 layers
trained with the original code encoder; Modelp;recttrain,
denoting the query model with 3 layers directly trained with
the original code encoder; Modelp;yrectpistill, representing
the query encoder with 3 layers directly distilled from the
original query encoder; and Modelgpgxcer, Which is the query
encoder distilled from the original query encoder using our
proposed strategy.

Based on the experiment results, we observe that
both Modelpirectpistizn and Modelgpencer oOutperform
Modelpirecttrain across all metrics and pre-trained models.
This demonstrates the effectiveness of the model distillation.
Additionally, our proposed distillation strategy shows the
capability to further enhance the performance of some pre-
trained models compared to the strategy of direct distil-

TABLE 6
Results of distillated dual-encoder performance comparison of different pre-trained models with different training strategy. The best results are
highlighted in bold font.

Model Python Java

R@1 R@3 R@5 MRR R@1 R@3 R@5 MRR
CodeBERTqriginal 0.652 0.839 0.888 0.757 0.533 0.704 0.754 0.633
CodeBERTp recetrasn ~ 0.591 (J9.3%) 0.799 (JA7%) 0.85T (J42%) 0706 (16.7%) 0.458 ([T4:1%) 0.659 (1.6:4%) 0.705 (6.5%) 0.569 ([101%)
CodeBERTpirectDistill 0.631 (13.2%) 0.824 (1.8%) 0.879 (11.0%) 0.740 (}2.2%) 0.511 (}4.1%) 0.689 ({2.1%) 0.742 (}1.6%) 0.615 (]2.8%)
CodeBERTspENCER 0.631 (3.2%) 0.824 (|1.8%) 0.879 (11.0%) 0.740 (}2.2%) 0.511 (|4.1%) 0.689 (|2.1%) 0.742 (11.6%) 0.615 (]2.8%)

GraphCodeBERToriginal 0.853 0.901

0.771

0.541 0.712 0.760 0.640

GraphCodeBERTpirectTrain
GraphCodeBERTDirectDistill

0.609 (19.0%) 0.809 (J5:2%) 0.866 (13.9%) 0722 [16.4%) 0471 (J12:9%) 0.659 (17.4%) 0.718 (15.5%) 0.583 ({:8.9%)
0.641 (14.2%) 0.836 (12.0%) 0.889 (11.3%) 0.750 (}2.7%) 0.516 (}4.6%) 0.691 (12.9%) 0.743 (12.2%) 0.619 (13.3%)

GraphCodeBERTspENCER 0.644 (]3.7%) 0.839 (}1.6%) 0.891 (}1.1%) 0.753 (}2.3%) 0.522 (13.5%) 0.697 (}2.1%) 0.749 (}1.4%) 0.624 (|2.5%)
CodeTSoriginal _ _ _ _ _ _ 0655 0842 08%2 0760 0500 0681 0737 0608
CodeT5pirectTrain 0.622 ({5.0%) 0.817 (13.0%) 0.872 (12:2%) 0.732 (13.7%) 0.446(}10.8%) 0.633 (17.0%) 0.696 (15.6%) 0.559 (/8.1%)
CodeT5pirectbistill 0.639 (]2.4%) 0.828 ([1.7%) 0.882 ([1.1%) 0.746 (}1.8%) 0.480 (14.0%) 0.667 ([2.1%) 0.726 (}1.5%) 0.591 (|2.8%)
CodeT5gpENCER 0.639 (12.4%) 0.828 (}1.7%) 0.882 (}1.1%) 0.746 (| 1.8%) 0.480 (14.0%) 0.667 (}2.1%) 0.726 (}1.5%) 0.591 (|2.8%)

o= CodeBERT-Java-Accl == CodeBERT-Java-MRR

0.570 0.660 0.590

—o— GraphCodeBERT-Java-Accl =#= GraphCodeBERT-Java-MRR

== CodeT5-Java-Accl == CodeT5-Java-MRR

0.585

0565 0.655
0.580
0.650

cc
S}
13
B

MRR

-
8 0.575

0.645 <
0.570

0.640 0565

0.635 0.560

0.675
0.670
0.665
0.660
0.655
0.650
0.645

0.590

0.670
0.580
0.660

g 0570 0.650

MRR
MRR

2
0560 0.640

0.550 0.630

2 3 4 5 6 7 8 9
Candidate number

10

N

3 4 5

() Results for CodeBERT in Java

== CodeBERT-Python-Accl == CodeBERT-Python-MRR

6

Candidate number

(b) Results for GraphCodeBERT in Java

= GraphCodeBERT-Python-Acc1—e— GraphCodeBERT-Python-MRR

0.640 0.540
10 2 3 4 5 6 7 8 9

Candidate number

0.620

7 8 9 10

(C) Results for CodeT5 in Java

== CodeT5-Python-Accl == CodeT5-Python-MRR

0.725

0.720 0.810

0.720
0710 0.800

0715
-
8 0.710
<

0.790

MRR

-
E 0.700
0.780 0.705
0.690

0.770 0.700

0.810
0.805
0.800
0.795
0.790
0.785
0.780

0.760

0.835
0.825
0.815
0.805
0.795
0.785

0.750
0.740

MRR
MRR

-
8 0730
<
0.720
0.710

0.760 0.695
10 2 3 4 5

0.680
2 3 4 5 6 7 8 9

Candidate number

(d) Results for CodeBERT in Python

6

Candidate number

(e) Results for GraphCodeBERT in Python

0.775 0.700 0.775

7 8 9 10 3 4 5 6 7 8 9

Candidate number

™

10

(f) Results for CodeT5 in Python

Fig. 4. Overall performance comparison between SPENCER with different number of recall candidates based on different pre-trained models

lation. Specifically, the best performance is achieved with
GraphCodeBERT on both Python and Java datasets us-
ing our distillation strategy. Interestingly, the distillation
strategy has no impact on the pre-trained models named
CodeBERT and CodeT5, indicating that involving a teaching
assistant in the model distillation process is unnecessary for
these two models. These results suggest that the necessity
of the teaching assistant during model distillation depends
on the model architecture of the pre-trained models.

In conclusion, our proposed distillation strategy can out-
perform both direct training of a small model and direct
distillation strategy. Moreover, the selection of a teaching
assistant model depends on the specific pre-trained mod-
els, as not all of them require a teaching assistant during
the distillation process. This highlights the effectiveness
and adaptability of our approach, demonstrating its po-
tential to achieve superior performance.

4.5 The impact of the recall number of the code candi-
dates to the overall performance of SPENCER

Fig. 4 displays the experiment results about the impact of the
recall number of candidates on the overall performance of
our proposed SPENCER across various pre-trained models.
The experimental results indicate that the overall perfor-
mance increase of our SPENCER varies across different pre-
trained models as the recall number increases. Specifically,
we observe a significant boost in our SPENCER’s overall
performance when the recall number is increased from 2 to
5 for the CodeBERT and GraphCodeBERT. This performance
increase tends to stabilize beyond a recall number of 5.
However, the performance improvement continues with
increasing recall numbers for the pre-trained model named
CodeT5. Furthermore, it's worth noting that the impact of
recall number on the overall performance of SPENCER on
the MRR metric is more substantial compared to the R@1
metric. While R@1 exhibits only marginal growth as the can-

didate number exceeds 5, the overall performance on MRR
continues to be improved with higher recall numbers. These
results indicate that although sometimes the dual-encoder
fails to return the precise code snippet that the cross-encoder
ranks as the top 1 answer, it does have the capability to
retrieve accurate code snippets that can be ranked as sub-
optimal answers by the cross-encoder when the recalled
candidates number from dual-encoder increases.

In conclusion, our proposed framework’s overall perfor-
mance exhibits steady improvement as the number of
recall candidates from the dual-encoder increases. Nev-
ertheless, the extent of this performance improvement
depends on the pre-trained models we have adopted in
our framework. Furthermore, it is noteworthy that the
increase in the number of recalls has a more pronounced
effect on the overall performance of SPENCER on the MRR
metric compared to the R@1 metric.

5 THREATS TO VALIDITY

After careful analysis, we have identified several potential
threats to the validity of our study.

5.1 Threats to External Validity

We have chosen Python and Java datasets to evaluate the
efficiency of our proposed framework, taking into account
training costs. Nonetheless, it is essential to acknowledge
that the performance of our framework might vary across
different programming languages.

Furthermore, we deliberately limit our choice to three
pre-trained models in our proposed framework, taking into
account the constraints of experimental costs. It is possible
that the performance improvement of our proposed frame-
work is not so significant or the distillation approaches
inside our framework will have a higher performance loss
when we adopt other pre-trained models as the base model
in our framework.

Finally, we assess the presented approach solely utilizing
the accuracy and Mean Reciprocal Rank (MRR) metrics in
the comprehensive performance experiment. Nevertheless,
it’s important to note that the overall efficacy of our pro-
posed framework might exhibit variations when considered
through different metrics.

5.2 Threats to Internal Validity

In this study, we maintain consistency by utilizing the
identical hyperparameters as CodeBERT for all the pre-
trained models. While we acknowledge that variations in
hyperparameters could potentially affect overall model per-
formance, we refrained from exploring such influences due
to the high costs associated with fine-tuning the models.
For example, the training batch size is a very important
hyperparameter for the dual-encoder training, since we
adopt the contrastive loss to train the dual-encoder and
previous research shows that the increase of training batch
size can improve the performance. Nevertheless, we have
omitted an exploration of the impact of the training batch
size on the dual-encoder’s behavior.

10

6 RELATED WORK
6.1 Code Retrieval

In this subsection, we briefly introduce the deep learning-
based code retrieval approaches, which are classified into
non pre-training based approaches and pre-training based
approaches.

6.1.1 Non pre-training approaches

Sachdev et al. [16] carry out the techniques on natural
language processing directly to the code area and investi-
gate the performance of techniques including wording em-
bedding [17], TF-IDF [18] weighting, and high-dimensional
vector similarity search [19] in the task of code retrieval.
Cambronero et al. [20] evaluate the performance of super-
vised and unsupervised techniques in the neural networks
and demonstrate the effectiveness of the supervised training
in the code retrieval task. Gu et al. [5] extract the code
tokens, method name tokens, and API sequences from the
original code at first. These features will be embedded into
the feature vectors individually and finally fused into a
single representation vectors for the given code. Husain
et al. [21] construct an open-source dataset for the code
retrieval and find that the self-attention model achieves
the best performance among all the models through their
evaluation. Yao et al. [22] adopt reinforcement learning to
generate the code annotation at first and such code annota-
tion can help the code retrieval model to better distinguish
the relevant code snippets from other similar code. Gu et
al. [4] extract the program dependency graph from the given
code and convert the graph into the relationship matrix. The
generated matrix will be concatenated with the statement-
level representation vectors and fed into long short-term
memory (LSTM) networks to generate function-level rep-
resentation vector.

6.1.2 Pre-training approaches

Inspired by the pre-training models in natural language
processing, Feng et al. [9] proposed a bimodal pre-trained
model with Transformer-based neural architecture, which
is named CodeBERT. CodeBERT is trained with the pre-
training task of replaced token detection. Later, Guo et al. [7]
considered the inherent structure of code and proposed
a pre-trained model named GraphCodeBERT. GraphCode-
BERT is trained with the extra information of data flow. To
address the problem that previous pre-training models are
sensitive to the source code edits, Jain et al. [23] pre-trained
ContrCode to identify the functionally similar variants
among non-equivalent distractors. Ahmad [24] proposed
a sequence to sequence pre-trained which trained via de-
noising autoencoding. Unlike previous pre-training models
which only contain the encoder, Wang et al. [25] proposed
a unified pre-trained encoder-decoder Transformer model
named CodeT5. CodeT5 is trained with the identifier-aware
pre-training task and such a task enables the model to distin-
guish the code tokens belonging to identifiers and recover
the masked identifiers. Similarly, Niu et al. [26] proposed
SPT-Code with three pre-training tasks which enable SPT-
Code to learn knowledge of source code, the corresponding
code structure, and a natural language description of the
code without relying on any bilingual corpus. To further

involve symbolic and syntactic properties of source code
into the pre-training model, Wang et al. [27] proposed
SyncoBERT trained with two novel pre-training objectives
which are Identifier Prediction and AST Edge Prediction.
To address the problem that the encoder-decoder frame-
work is sub-optimal for auto-regressive tasks, Guo et al. [6]
proposed a unified cross-modal pre-trained model named
UniXcoder. To control the behavior of the model, UniXcoder
utilizes mask attention matrices with prefix adapters. Bui
et al. [28] proposed a self-supervised contrastive learning
framework named Corder, which can learn to distinguish
similar and dissimilar code snippets.

6.2 Knowledge Distillation

The technology of knowledge distillation aims to reduce
the model parameters while preserving most of the perfor-
mance of the original model by making the small model
learn the output distribution from the large model. Such
technology has attracted a large number of researchers in
recent years. Hinton et al. [29] first proposed the concept of
knowledge distillation. Li et al. proposed a mimic method
that can map the features from the small network onto
the same dimension of the large network for knowledge
distillation. Tang et al. [30] distillated a Bi-LSTM model from
BERT [31] for the task of paraphrasing, natural language
inference, and sentiment classification. Romero et al. [32]
adopted a deeper and thinner student network to learn
the knowledge from the teacher network and achieve a
better performance with fewer parameters on CIFAR-10. To
further improve the efficiency of search model in the recom-
mendation system, Tang et al. [33] proposed a knowledge
distillation technique to train a student model by learning
the ranking knowledge of documents/items from both the
training data and teacher model. The student model can
achieve a comparable performance as the teacher model
with a more efficient online inference time. Zhang et al. [34]
proposed a deep mutual learning (DML) strategy which
makes the multiple student models to learn collaboratively
and teach each other during the training process. The exper-
iment results show that the mutual learning of many stu-
dent models outperforms distillation from a teacher model.
Rather than training a smaller student model from the
large teacher model, Tommaso et al. [35] trained student
models which are parameterized identically to the teachers
models and they found that the student models outperform
their teachers significantly on both computer vision and
language modeling tasks. To avoid the full training of a large
model, Li et al. [36] proposed a online knowledge distillation
approach that acquires the predicted heatmaps from the
trained multi-branch network and assemble these heatmaps
as the target heatmaps to teach each branch in reverse.
Most of the previous research on Knowledge distillation
has primarily concentrated on classification tasks. However,
its potential application in tasks involving the generation
of representation vectors, such as the code retrieval task,
remains relatively unexplored.

7 CONCLUSION

In this paper, we introduce a framework that seamlessly
integrates both dual-encoder and cross-encoder for code

11

retrieval tasks. Additionally, we present an innovative ap-
proach to distill the query encoder model which can im-
prove the inference efficiency of the query encoder while
preserving most of its performance. To further elevate the
performance of these distilled models while maintaining
consistent model sizes, we propose a novel teaching as-
sistant selection strategy for the distillation process. Our
experimental results show the effectiveness of our proposed
framework. Notably, our model distillation approach suc-
ceeds in reducing the inference time of the query encoder
within our framework by approximately 70% while preserv-
ing over 98% of the overall performance.

In the future, our focus will be on investigating methods
to further reduce the inference time of the query encoder
while enhancing the overall performance of this framework.

REFERENCES

[1] J. Brandt, P. J. Guo,]J. Lewenstein, M. Dontcheva, and
S. R. Klemmer, “Two studies of opportunistic programming:
interleaving web foraging, learning, and writing code,” in
Proceedings of the 27th International Conference on Human Factors in
Computing Systems, CHI 2009, Boston, MA, USA, April 4-9, 2009,
D. R. O.]Jr, R. B. Arthur, K. Hinckley, M. R. Morris, S. E. Hudson,
and S. Greenberg, Eds. ACM, 2009, pp. 1589-1598. [Online].
Available: https:/ /doi.org/10.1145/1518701.1518944

[2] E Lv, H. Zhang,]J. Lou, S. Wang, D. Zhang, and]. Zhao,
“Codehow: Effective code search based on API understanding
and extended boolean model (E),” in 30th IEEE/ACM International
Conference on Automated Software Engineering, ASE 2015, Lincoln,
NE, USA, November 9-13, 2015, M. B. Cohen, L. Grunske, and
M. Whalen, Eds. IEEE Computer Society, 2015, pp. 260-270.
[Online]. Available: https://doi.org/10.1109/ASE.2015.42

[3] C. McMillan, M. Grechanik, D. Poshyvanyk, Q. Xie, and
C. Fu, “Portfolio: finding relevant functions and their usage,”
in Proceedings of the 33rd International Conference on Software
Engineering, ICSE 2011, Waikiki, Homolulu , HI, USA, May
21-28, 2011, R. N. Taylor, H. C. Gall, and N. Medvidovic,
Eds. ACM, 2011, pp. 111-120. [Online]. Available: https:
//doi.org/10.1145/1985793.1985809

[4] W. Gu, Z. Li, C. Gao, C. Wang, H. Zhang, Z. Xu, and M. R.
Lyu, “Cradle: Deep code retrieval based on semantic dependency
learning,” Neural Networks, vol. 141, pp. 385-394, 2021. [Online].
Available: https:/ /doi.org/10.1016 /j.neunet.2021.04.019

[5] X. Gu, H. Zhang, and S. Kim, “Deep code search,” in
Proceedings of the 40th International Conference on Software
Engineering, ICSE 2018, Gothenburg, Sweden, May 27 - June
03, 2018, M. Chaudron, I. Crnkovic, M. Chechik, and
M. Harman, Eds. ACM, 2018, pp. 933-944. [Online]. Available:
https://doi.org/10.1145/3180155.3180167

[6] D.Guo,S.Lu, N. Duan, Y. Wang, M. Zhou, and J. Yin, “Unixcoder:
Unified cross-modal pre-training for code representation,” in
Proceedings of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), ACL 2022,
Dublin, Ireland, May 22-27, 2022, S. Muresan, P. Nakov,
and A. Villavicencio, Eds. Association for Computational
Linguistics, 2022, pp. 7212-7225. [Online]. Available: https:
//doi.org/10.18653/v1/2022.acl-long.499

[7] D. Guo, S. Ren, S. Lu, Z. Feng, D. Tang, S. Liu, L. Zhou,
N. Duan, A. Svyatkovskiy, S. Fu, M. Tufano, S. K. Deng,
C. B. Clement, D. Drain, N. Sundaresan,]. Yin, D. Jiang,
and M. Zhou, “Graphcodebert: Pre-training code representations
with data flow,” in 9th International Conference on Learning
Representations, ICLR 2021, Virtual Event, Austria, May 3-
7, 2021. OpenReview.net, 2021. [Online]. Available: https:
/ / openreview.net/forum?id=jLoC4ez43PZ

[8] O. Khattab and M. Zaharia, “Colbert: Efficient and effective
passage search via contextualized late interaction over BERT,”
in Proceedings of the 43rd International ACM SIGIR conference
on research and development in Information Retrieval, SIGIR
2020, Virtual Event, China, July 25-30, 2020,]. X. Huang,
Y. Chang, X. Cheng,]J. Kamps, V. Murdock, J. Wen, and
Y. Liu, Eds. ACM, 2020, pp. 39-48. [Online]. Available:
https://doi.org/10.1145/3397271.3401075

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

[23]

Z. Feng, D. Guo, D. Tang, N. Duan, X. Feng, M. Gong,
L. Shou, B. Qin, T. Liu, D. Jiang, and M. Zhou, “Codebert: A
pre-trained model for programming and natural languages,” in
Findings of the Association for Computational Linguistics: EMNLP
2020, Online Event, 16-20 November 2020, ser. Findings of ACL,
T. Cohn, Y. He, and Y. Liu, Eds., vol. EMNLP 2020. Association
for Computational Linguistics, 2020, pp. 1536-1547. [Online].
Available: https:/ /doi.org/10.18653/v1/2020.findings-emnlp.139
T. Gao, X. Yao, and D. Chen, “Simcse: Simple contrastive learning
of sentence embeddings,” in Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing, EMINLP 2021,
Virtual Event / Punta Cana, Dominican Republic, 7-11 November, 2021,
M. Moens, X. Huang, L. Specia, and S. W. Yih, Eds. Association
for Computational Linguistics, 2021, pp. 6894-6910. [Online].
Available: https:/ /doi.org/10.18653/v1/2021.emnlp-main.552

R. Haldar, L. Wu, J. Xiong, and]J. Hockenmaier, “A multi-
perspective architecture for semantic code search,” in Proceedings
of the 58th Annual Meeting of the Association for Computational
Linguistics, ACL 2020, Online, July 5-10, 2020, D. Jurafsky,
J. Chai, N. Schluter, and J. R. Tetreault, Eds. Association
for Computational Linguistics, 2020, pp. 8563-8568. [Online].
Available: https:/ /doi.org/10.18653/v1/2020.acl-main.758

J. Shuai, L. Xu, C. Liu, M. Yan, X. Xia, and Y. Lei, “Improving
code search with co-attentive representation learning,” in ICPC
'20: 28th International Conference on Program Comprehension, Seoul,
Republic of Korea, July 13-15, 2020. ACM, 2020, pp. 196-207.
[Online]. Available: https:/ /doi.org/10.1145/3387904.3389269

S. Fang, Y. Tan, T. Zhang, and Y. Liu, “Self-attention networks
for code search,” Inf. Softw. Technol., vol. 134, p. 106542, 2021.
[Online]. Available: https://doi.org/10.1016/j.infsof.2021.106542
G. Heyman and T. V. Cutsem, “Neural code search revisited:
Enhancing code snippet retrieval through natural language
intent,” CoRR, vol. abs/2008.12193, 2020. [Online]. Available:
https:/ /arxiv.org/abs/2008.12193

D. P. Kingma and]. Ba, “Adam: A method for stochastic
optimization,” in 3rd International Conference on Learning
Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings, Y. Bengio and Y. LeCun, Eds., 2015.
[Online]. Available: http:/ /arxiv.org/abs/1412.6980

S. Sachdev, H. Li, S. Luan, S. Kim, K. Sen, and S. Chandra,
“Retrieval on source code: a neural code search,” in Proceedings of
the 2nd ACM SIGPLAN International Workshop on Machine Learning
and Programming Languages, MAPL@PLDI 2018, Philadelphia,
PA, USA, June 18-22, 2018,]. Gottschlich and A. Cheung,
Eds. ACM, 2018, 31-41. [Online]. Available: https:
//doi.org/10.1145/3211346.3211353

P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov, “Enriching
word vectors with subword information,” Trans. Assoc. Comput.
Linguistics, vol. 5, pp. 135-146, 2017. [Online]. Available:
https:/ /doi.org/10.1162/tacl_a_00051

B. Mitra and N. Craswell, “Neural models for information
retrieval,” CoRR, vol. abs/1705.01509, 2017. [Online]. Available:
http:/ /arxiv.org/abs/1705.01509

J. Johnson, M. Douze, and H. Jégou, “Billion-scale similarity
search with gpus,” IEEE Trans. Big Data, vol. 7, no. 3, pp. 535-547,
2021. [Online]. Available: https://doi.org/10.1109/TBDATA.2019.
2921572

J. Cambronero, H. Li, S. Kim, K. Sen, and S. Chandra, “When deep
learning met code search,” in Proceedings of the ACM Joint Meeting
on European Software Engineering Conference and Symposium on
the Foundations of Software Engineering, ESEC/SIGSOFT FSE 2019,
Tallinn, Estonia, August 26-30, 2019, M. Dumas, D. Pfahl, S. Apel,
and A. Russo, Eds. ACM, 2019, pp. 964-974. [Online]. Available:
https://doi.org/10.1145/3338906.3340458

H. Husain, H. Wu, T. Gazit, M. Allamanis, and M. Brockschmidt,
“Codesearchnet challenge: Evaluating the state of semantic code
search,” CoRR, vol. abs/1909.09436, 2019. [Online]. Available:
http:/ /arxiv.org/abs/1909.09436

Z. Yao, J. R. Peddamail, and H. Sun, “Coacor: Code annotation
for code retrieval with reinforcement learning,” in The World Wide
Web Conference, WWW 2019, San Francisco, CA, USA, May 13-17,
2019, L. Liu, R. W. White, A. Mantrach, E. Silvestri, J.]. McAuley,
R. Baeza-Yates, and L. Zia, Eds. ACM, 2019, pp. 2203-2214.
[Online]. Available: https://doi.org/10.1145/3308558.3313632

P. Jain, A. Jain, T. Zhang, P. Abbeel,]. Gonzalez, and I. Stoica,
“Contrastive code representation learning,” in Proceedings
of the 2021 Conference on Empirical Methods in Natural

[24]

[25]

[26]

[27]

(28]

[29]

(30]

[31]

(32]

(33]

[34]

12

Language Processing, EMNLP 2021, Virtual Event / Punta
Cana, Dominican Republic, 7-11 November, 2021, M. Moens,
X. Huang, L. Specia, and S. W. Yih, Eds. Association
for Computational Linguistics, 2021, pp. 5954-5971. [Online].
Available: https:/ /doi.org/10.18653/v1/2021.emnlp-main.482

W. U. Ahmad, S. Chakraborty, B. Ray, and K. Chang, “Unified
pre-training for program understanding and generation,” in
Proceedings of the 2021 Conference of the North American
Chapter of the Association for Computational Linguistics: Human
Language Technologies, NAACL-HLT 2021, Online, June 6-11, 2021,
K. Toutanova, A. Rumshisky, L. Zettlemoyer, D. Hakkani-
Tiir, I. Beltagy, S. Bethard, R. Cotterell, T. Chakraborty, and
Y. Zhou, Eds. Association for Computational Linguistics, 2021,
PPp- 2655-2668. [Online]. Available: https:/ /doi.org/10.18653/v1/
2021.naacl-main.211

Y. Wang, W. Wang, S. R. Joty, and S. C. H. Hoi, “Codet5:
Identifier-aware unified pre-trained encoder-decoder models for
code understanding and generation,” in Proceedings of the 2021
Conference on Empirical Methods in Natural Language Processing,
EMNLP 2021, Virtual Event / Punta Cana, Dominican Republic,
7-11 November, 2021, M. Moens, X. Huang, L. Specia, and
S. W. Yih, Eds. Association for Computational Linguistics, 2021,
pp- 8696-8708. [Online]. Available: https://doi.org/10.18653/v1/
2021.emnlp-main.685

C. Niu, C. Li V. Ng, J]. Ge, L. Huang, and B. Luo,
“Spt-code: Sequence-to-sequence pre-training for learning source
code representations,” in 44th IEEE/ACM 44th International
Conference on Software Engineering, ICSE 2022, Pittsburgh, PA, USA,
May 25-27, 2022. ACM, 2022, pp. 1-13. [Online]. Available:
https:/ /doi.org/10.1145/3510003.3510096

X. Wang, Y. Wang, F. Mi, P. Zhou, Y. Wan, X. Liu, L. Li, H. Wu,
J. Liu, and X. Jiang, “Syncobert: Syntax-guided multi-modal
contrastive pre-training for code representation,” arXiv preprint
arXiv:2108.04556, 2021.

N. D. Q. Bui, Y. Yu, and L. Jiang, “Self-supervised contrastive
learning for code retrieval and summarization via semantic-
preserving transformations,” in SIGIR 21: The 44th International
ACM SIGIR Conference on Research and Development in Information
Retrieval, Virtual Event, Canada, July 11-15, 2021, F. Diaz,
C. Shah, T. Suel, P. Castells, R. Jones, and T. Sakai,
Eds. ACM, 2021, pp. 511-521. [Online]. Available: https:
//doi.org/10.1145/3404835.3462840

G. E. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge
in a neural network,” CoRR, vol. abs/1503.02531, 2015. [Online].
Available: http:/ /arxiv.org/abs/1503.02531

R. Tang, Y. Lu, L. Liu, L. Mou, O. Vechtomova, and J. Lin,
“Distilling task-specific knowledge from BERT into simple neural
networks,” CoRR, vol. abs/1903.12136, 2019. [Online]. Available:
http:/ /arxiv.org/abs/1903.12136

J. Devlin, M. Chang, K. Lee, and K. Toutanova, “BERT:
pre-training of deep bidirectional transformers for language
understanding,” in Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computational Linguistics:
Human Language Technologies, NAACL-HLT 2019, Minneapolis,
MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers),
J. Burstein, C. Doran, and T. Solorio, Eds. Association
for Computational Linguistics, 2019, pp. 4171-4186. [Online].
Available: https:/ /doi.org/10.18653/v1/n19-1423

A. Romero, N. Ballas, S. E. Kahou, A. Chassang, C. Gatta,
and Y. Bengio, “Fitnets: Hints for thin deep nets,” in 3rd
International Conference on Learning Representations, ICLR 2015,
San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings,
Y. Bengio and Y. LeCun, Eds., 2015. [Online]. Available:
http:/ /arxiv.org/abs/1412.6550

J. Tang and K. Wang, “Ranking distillation: Learning compact
ranking models with high performance for recommender system,”
in Proceedings of the 24th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, KDD 2018, London, UK, August
19-23, 2018, Y. Guo and F. Farooq, Eds. ACM, 2018, pp. 2289-2298.
[Online]. Available: https://doi.org/10.1145/3219819.3220021

Y. Zhang, T. Xiang, T. M. Hospedales, and H. Lu, “Deep
mutual learning,” in 2018 IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 2018, Salt Lake City,
UT, USA, June 18-22, 2018. Computer Vision Foundation /
IEEE Computer Society, 2018, pp. 4320-4328. [Online]. Avail-
able: http://openaccess.thecvf.com/content_cvpr_2018/html/
Zhang_Deep_Mutual_Learning_CVPR_2018_paper.html

[35]

[36]

T. Furlanello, Z. C. Lipton, M. Tschannen, L. Itti, and
A. Anandkumar, “Born-again neural networks,” in Proceedings
of the 35th International Conference on Machine Learning, ICML
2018, Stockholmsmissan, Stockholm, Sweden, July 10-15, 2018, ser.
Proceedings of Machine Learning Research, J. G. Dy and
A. Krause, Eds., vol. 80. PMLR, 2018, pp. 1602-1611. [Online].
Available: http:/ / proceedings.mlr.press /v80/furlanello18a.html
Z.1i,]. Ye, M. Song, Y. Huang, and Z. Pan, “Online knowledge
distillation for efficient pose estimation,” in 2021 IEEE/CVF
International Conference on Computer Vision, ICCV 2021, Montreal,
QC, Canada, October 10-17, 2021. IEEE, 2021, pp. 11720-
11730. [Online]. Available: https://doi.org/10.1109/ICCV48922.
2021.01153

13

