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SPENCER: Self-Adaptive Model Distillation for
Efficient Code Retrieval

Wenchao Gu, Zongyi Lyu, Yanlin Wang, Hongyu Zhang, Cuiyun Gao, Michael R. Lyu

Abstract—Code retrieval aims to provide users with desired code snippets based on users’ natural language queries. With the
development of deep learning technologies, adopting pre-trained models for this task has become mainstream. Considering the
retrieval efficiency, most of the previous approaches adopt a dual-encoder for this task, which encodes the description and code
snippet into representation vectors, respectively. However, the model structure of the dual-encoder tends to limit the model’s
performance, since it lacks the interaction between the code snippet and description at the bottom layer of the model during training. To
improve the model’s effectiveness while preserving its efficiency, we propose a framework, which adopts Self-AdaPtive Model
Distillation for Efficient CodE Retrieval, named SPENCER. SPENCER first adopts the dual-encoder to narrow the search space and
then adopts the cross-encoder to improve accuracy. To improve the efficiency of SPENCER, we propose a novel model distillation
technique, which can greatly reduce the inference time of the dual-encoder while maintaining the overall performance. We also
propose a teaching assistant selection strategy for our model distillation, which can adaptively select the suitable teaching assistant
models for different pre-trained models during the model distillation to ensure the model performance. Extensive experiments
demonstrate that the combination of dual-encoder and cross-encoder improves overall performance compared to solely
dual-encoder-based models for code retrieval. Besides, our model distillation technique retains over 98% of the overall performance
while reducing the inference time of the dual-encoder by 70%.

Index Terms—Code retrieval, Deep learning, Model distillation
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1 INTRODUCTION

W ITH the advancement of Internet technology and the
rise of open-source communities, utilizing the web

to search for necessary code has become a prevailing trend
among developers [1], [2]. A significant challenge for the
effective search lies in the semantic gap between human
natural language and programming languages. To mitigate
the gap, extensive efforts [3], [4], [5] have been devoted
to accurately retrieve the required code through natural
language.

With the rapid development of neural network tech-
nology and pre-training methods, fine-tuning pre-trained
code-based models has become the prevailing approach in
the code retrieval task. Most of pre-trained model based
approaches adopt the dual-encoder [6], [7]. As shown in
Fig. 1, code snippets and natural language-based descrip-
tions are encoded separately by two independent encoders
in the dual-encoder based approaches [6], [7]. The similarity
between the encoded representation vectors of the code
and description is then computed using cosine similarity.
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Fig. 1. Illustration of the code retrieval approach with dual-encoder
architecture and cross-encoder architecture.

However, the lack of interaction between the code snippet
and description at the bottom layer of the model during the
training limits the model performance [8].

To involve the interaction between the code snippet
and description, one commonly used solution is the cross-
encoder [9]. As shown in Fig. 1, the architecture incorporates
both code snippets and natural language descriptions as
a single model input. This unified approach generates a
normalized score that evaluates the alignment between the
provided code and its corresponding description, effectively
quantifying their similarity degree. Nevertheless, the cross-
encoder does face efficiency challenges. In contrast to the
dual-encoder, which can compute and store the code’s rep-
resentation vector in advance within a database, the cross-
encoder lacks this precomputation capability. This stems
from the cross-encoder’s reliance on input from both the
query and the code, leading to the recalculation of matching
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scores between the query and every code entry in the
database. Therefore, the inference cost associated with the
cross-encoder becomes impractical when dealing with large
code databases.

To obtain the high performance of the cross-encoder as
much as possible while considering the efficiency problem,
we propose a novel framework named SPENCER for the
task of code retrieval. This framework adopts the dual-
encoder initially to select several candidates from the entire
database based on the given query. Once the candidates
are retrieved, the query is sequentially combined with each
candidate and passed into the cross-encoder. This process
calculates the matching score for each selected pair and re-
ranks the order of candidates. The adoption of this approach
can greatly reduce the inference cost of the cross-encoder
from the entire database to a small fixed number.

Since the primary purpose of the dual-encoder within
our framework is to select a fixed number of candidates, it
is sufficient to ensure that the correct answer is among the
returned candidates. Nevertheless, employing a pre-trained
model as the dual-encoder comes with a high computation
cost due to its large size. We argue that such a large model
might not be necessary for the dual-encoder’s function and
the approaches for reducing the dual-encoder’s model size
while simultaneously upholding its performance within this
framework still remain unexplored. To address this prob-
lem, we propose a novel model distillation approach for the
dual-encoder on the query side. The proposed model distil-
lation approach makes our distilled query encoder learn the
similarity in both single modality and dual modality from
the teacher dual-encoder without relying on ground-truth
information. Such a model distillation approach enables us
to achieve an efficient and accurate dual-encoder without
sacrificing too much performance.

To further improve the performance of distilled query
encoder, we propose a self-adaptive teaching assistant se-
lection approach for our model distillation. This approach
can dynamically select suitable teaching assistants for the
distilled query encoder during the model distillation pro-
cess.

We conducted comprehensive experiments to validate
the effectiveness of our proposed framework, incorporating
the proposed model distillation approach. The results of
the experiments demonstrate the efficiency of the frame-
work in significantly improving performance with consid-
erable computation costs. Our model distillation approach
is highly effective, reducing the inference time by around
70% of the dual encoder model while preserving more than
98% of overall performance.

We summarize the main contributions of this paper as
follows:

• We propose a framework that combines the dual-
encoder and cross-encoder utilizing pre-trained
models for the code retrieval task. Experimental re-
sults showcase that this integrated approach attains
higher accuracy compared to the pure dual-encoder
method.

• We propose a novel model distillation approach for
the dual-encoder within our prpoposed framework.
Our method greatly reduces the parameters of the

dual-encoder while preserving the most performance
of this framework.

• We propose a novel approach for selecting the teach-
ing assistant model in model distillation. This ap-
proach dynamically selects the appropriate assistant
model for various pre-trained models, allowing for
controlled computation costs during training. By em-
ploying this adaptive selection process, this approach
can further improve the overall performance.

The remainder of this paper is structured as follows:
Section 3 provides an overview of the architecture of our
proposed SPENCER, including the design of the unified
framework, and the design of the model distillation ap-
proach with the teaching assistant. Section 4 describes our
experimental setup, including the datasets used, evaluation
metrics, and implementation specifics. In Section 5, we
present the experimental results and provide our analysis.
In Section 7, we discuss the threats to the validity of our
experiments. Section 8 discusses the related work on code
retrieval and knowledge distillation, while Section 9 con-
cludes the paper.

2 BACKGROUND

In this section, we present the training methodologies uti-
lized for both the dual-encoder and cross-encoder models
in our experiments. These strategies have been extensively
employed in prior studies [6], [7], [9] focusing on code
retrieval tasks.

2.1 Dual-Encoder Training

Under our proposed framework, the functionality of the
dual-encoder is to select the top K code candidates that
are most likely to contain the correct answer. There are
dual-encoders in our framework: the query encoder and the
code encoder. Both of these encoders utilize Transformer-
based pre-trained models. To prepare the input data for the
encoders, the queries and code snippets are tokenized into
sequences of tokens. For each sequence, a special token,
denoted as [CLS], is added at the beginning, resulting in
a token sequence with the form [CLS], [Tok1], [Tok2], ....
During the training process of the dual-encoders, the token
sequence of the code and the query are fed into the code
encoder and the query encoder, respectively. We extract
the hidden vectors of the first token from the last layer in
the query encoder and the code encoder, which serves as
the code representation vector and the query representation
vector, respectively. Since prior research has proved the
effectiveness of contrastive learning in the vector alignment
tasks including code retrieval, we also employ contrastive
learning for dual-encoder training to further improve the
model performance. Here we introduce the contrastive loss,
which is a widely employed technique for training dual en-
coders in previous approaches [10], [11], [12], [13]. The loss
for the dual-encoder training consists of three components:
the contrastive loss for the code modality, the contrastive
loss for the query modality, and the contrastive loss for the
cross-modality. The contrastive loss for the code modality is
formed as follows:
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LCT = −
n∑

i=1

log
exp(ci · c+i /τ)∑n

j=1,i̸=j exp(ci · c
−
j /τ)

(1)

where c+i is the positive sample of the i-th code snippet, c−j
is the negative sample of the j-th code snippet, n is the size
of training batch and τ is the temperature parameter. We
follow SimCSE [14], which is recognized as a widely utilized
contrastive learning technique renowned for its popularity
and effectiveness. SimCSE can generate the positive samples
by adopting different mask to encoder with the given input.

Similarly, the contrastive loss for the query modality is:

LQT = −
n∑

i=1

log
exp(qi · q+i /τ)∑n

j=1,i̸=j exp(qi · q
−
j /τ)

(2)

where q+i is the positive sample of the i-th description, q−j
is the negative sample of the j-th description, n is the size
of training batch and τ is the temperature parameter. The
method of positive sample generation is the same as the
previous one.

The contrastive loss for the cross modality is

LDT = −
n∑

i=1

log
exp(ci · qi/τ)∑n

j=1,i̸=j exp(ci · qj/τ)
(3)

where ci is the i-th code snippet, qi is the i-th description,
n is the size of training batch and τ is the temperature
parameter. In the contrastive loss for the cross modality,
the corresponding description is adopted as the positive
sample for the given code and the unmatched description
is adopted as the negative sample for the given code.

The total loss for the dual-encoder training is shown as:

LT = LCT + LQT + LDT (4)

2.2 Cross-Encoder Training
In this framework, the role of the cross-encoder is to re-
rank the selected code candidates from the dual-encoder,
aiming for accuracy improvement. For the cross-encoder,
the code and query will be firstly tokenized into a token
sequence, respectively. Then these two token sequences
will be combined into a single token sequence. [CLS]
will be added at the beginning of the toke sequence and
[SEP ] will be added between the code token sequence
and query token sequence. The token sequence will be
[CLS], [Code tok1], ..., [SEP ], [Query tok1], .... The cross-
encoder is trained using the cross-entropy loss, which is a
common practice and defined as follows:

LC = −
n∑

i=1

(ylogŷ + (1− y)log(1− ŷ)) (5)

where y is the ground-truth label which indicates whether
the given pair of query and code is matched and ŷ is the
normalized prediction score from the cross-encoder.

3 METHODOLOGY

In this section, we first present the principles of our pro-
posed framework. Then we introduce our self-adaptive
approach for identifying a suitable teaching assistant during
the model distillation process.

3.1 Overview
Fig. 2 illustrates the overall framework of our approach. In
this framework, both the dual-encoder and cross-encoder
are trained in advance. After training, code snippets inside
the code database are encoded into code representation vec-
tors using the code-encoder, which is a dual-encoder. These
code vectors are then pre-stored in the code database. When
a user query is received, the query encoder, which is another
kind of dual-encoder, processes the query and generates a
query representation vector. To find the most relevant code
candidates, the cosine similarity between the query vector
and each code vector in the database is calculated and sorted
in descending order. The top K code candidates with the
highest cosine similarity would be retrieved. Each of these
candidates is then combined with the original query input,
resulting in a new concatenated input. These new inputs
are then fed into the cross-encoder, and the code candidates
are re-ranked based on a descending sort of matching scores
obtained from the cross-encoder. Finally, the top K re-ranked
code list is concatenated with the remaining part of the code
list from the dual-encoder. This combined list is considered
the final code list and returned to the user.

3.2 Query Encoder Distillation
In the dual-encoder, the code encoder’s primary role is
to encode code snippets into code representation vectors
during the construction of the code database. Once this
encoding process is complete, the code encoder remains
inactive until new code snippets are added to the database.
Unlike the code encoder, the query encoder will be invoked
when the system receives the query from the user. Since
the model distillation will unavoidably lead to performance
degradation, it is better to keep the model unchanged if
the model will not affect the efficiency of the entire system.
Therefore, our focus shifts to the model distillation for the
query encoder. Unlike previous approaches that attempted
to distill the distribution of logits output from the model in
the code area, our objective is to distill the high-dimensional
spatial projection capabilities of pre-trained models into
smaller models. Our goal is to preserve the performance
of the pre-trained model as much as possible. To achieve
this, we propose a novel distillation loss for our model
distillation. Fig. 3 illustrates the process of query encoder
distillation. The distillation loss comprises two components:
one for the query modality and another for the dual modal-
ity. The distillation loss for the query modality is outlined
below:

LQD =
n∑

i=1

(1− q̂i · qi
||q̂i|| · ||qi||

) (6)

where qi is the i-th code representation vector from the
target model, which is the model needs to be distilled, and
q̂i is the i-th code representation vector from our distilled
model. Since we hope that the representation vector from
the distilled model can be identical to the representation
vector from the target model, the cosine similarity between
these two representation vectors and align the similarity
with 1.

However, the performance of the distilled model will
drop significantly if the distilled model capacity has a large
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Fig. 2. The overall framework of SPENCER. Code retrieval under this framework can be split into two steps: rough sorting for code candidates and
top-K results re-ranking. Rough sorting for code candidates: the code snippets in the code database and the given query are embedded into
vectors via the dual-encoder, respectively. Then the cosine similarity between the query vector and code vector will be calculated and the code
candidates will be sorted in a descending order according to this similarity. Top-K results re-ranking: The top-K code snippets in the previous code
candidates list are concatenated with the given query and the new input will be fed into cross-encoder. The top-K results in the code candidates list
will be re-ranked according to the match score from the cross-encoder.
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Fig. 3. The process of model distillation within our framework. There are two main components in our model distillation, which are Distillation with
Teaching Assistant and Query Encoder Distillation. Distillation with Teaching Assistant: To alleviate the learning problem brought by the large
size gap between the large teacher model and the small student model, a middle teaching assistant model will be trained at first. Then both the
teacher model and teaching assistant model will be utilized for the student model training. The details of the selection strategy for the teaching
assistant model will be introduced in the following section. Query Encoder Distillation: A small query encoder will be distillated from the original
query encoder with the training loss of both single modality and dual modality. The single modality loss aims to align the output of the distillated
query encoder to the output of the original query encoder. The purpose of the dual-modality loss is to provide the relative positional relationship
between the output from both the original query encoder and code encoder for the distillated query encoder learning.

gap with the target model capacity. To tackle this issue,
the distillation loss of dual-modality is introduced and it
is shown below:

LDD =
n∑

i=1

| ci · qi
||ci|| · ||qi||

− q̂i · ci
||q̂i|| · ||ci||

| (7)

where ci is the i-th code representation vector from the
original code encoder, qi is the i-th query representation

vector from the target query encoder, and q̂i is the i-th query
representation vector from the distillated query encoder.
The cosine similarity serves as the primary metric in code
retrieval. By considering the similarity of the dual modality
as part of the training target, we preserve the relative
positional relationship between queries and codes, leading
to enhanced performance of the distilled model.

The total loss for the dual-encoder distillation is shown
as:
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LD = LQD + LDD (8)

In contrast to the conventional distillation approach used
in classification tasks, where the ground-truth labels serve as
the training target, our findings indicate that incorporating
ground-truth labels during the query encoder distillation
does not contribute to the enhancement of model perfor-
mance; on the contrary, it negatively impacts the perfor-
mance. We assessed the distillation performance using the
contrastive loss, outlined as follows:

LCD = LD + LQT + LDT (9)

The specifics will be discussed in the upcoming section.

3.3 Self-Adaptive Teaching Assistant Selection

Addressing the challenge of a large capability gap between
teacher and student models, a popular approach involves
introducing a teaching assistant model [15], [16]. This inter-
mediary model, with a size between that of the teacher and
student models, helps bridge the knowledge gap. Initially,
the teaching assistant model learns from the teacher model,
converting complex knowledge into a more accessible form.
Subsequently, the student model learns from the teach-
ing assistant model, enhancing its grasp of the teacher’s
knowledge. However, determining the optimal size for the
teaching assistant model poses difficulties. The vast search
space and associated computational costs make exhaustive
exploration impractical. Additionally, even models with the
same architecture may require different-sized teaching assis-
tant models due to varying pre-trained models. Therefore,
selecting the appropriate teaching assistant model for differ-
ent pre-trained models becomes a crucial challenge.

To address this problem, we propose a novel approach
for selecting the teaching assistant model during the model
distillation process. Our method dynamically adjusts the
teaching assistant model to find the most suitable one.
The detailed steps of our proposed approach can be found
in Algorithm 1. In Algorithm 1, ModelCompression(M,P)
indicates the model compression operation for the model
M with reduced parameter P. ModelDistillation(M1,M2)
indicates the model distillation operation from the M1 with
the reference of M2. Validation(M1,M2) indicates the per-
formance validation from the model M1 and M2. For the
initialization, we will set the amount of model parameters
to be reduced in each distillation step and train a teaching
assistant model with reduced parameters at first. Subse-
quently, we consider the original teacher model and the
newly distilled teaching assistant as two target models for
the distillation. The distillation process yields two student
models from these targets, which are then compared in
terms of their performance. The student model with supe-
rior performance replaces the teacher model that teaches
the less competent student. This replacement is necessary
because the teacher model exhibiting poor teaching ability
is identified through this comparison. The two new target
models (the better student model and the original teacher
model) are then used for distilling a new student model.
This loop of distillation continues until the model reaches
its minimum size, or the performance difference between

Algorithm 1 Algorithm for Self-Adaptive Teaching Assis-
tant Selection

Input: CMT : Original teacher model for the code encod-
ing, QM : Original model for the query encoding, P : The
Reduced parameters for every step, T : Threshold for the
performance drop
Output: CMStudent: Student model for the code encoding
CMA1 ← CMT

CMA2 ← ModelCompression(CMT , P )
CMA2 ← ModelDistillation(CMA1, QM)
CMS ← CMA2

ScoreT = Validation(CMT , QM)
ScoreS = Validation(CMS , QM)
while ScoreT − ScoreS < T do
CMTemp1 ← ModelCompression(CMA2, P )
CMTemp2 ← ModelCompression(CMA2, P )
CMTemp1 ← ModelDistillation(CMA1, QM)
CMTemp2 ← ModelDistillation(CMA2, QM)
ScoreA1 = Validation(CMTemp1, QM)
ScoreA2 = Validation(CMTemp2, QM)
if ScoreA1 > ScoreA2 then
CMA2 ← CMTemp1

ScoreS = ScoreA1

else
CMA1 ← CMA2

CMA2 ← CMTemp1

ScoreS = ScoreA2

if ScoreT − ScoreS < T then
CMS ← CMA2

return CMS

TABLE 1
Dataset statistics.

Dataset Training Validation Test

Python 412,178 23,107 22,176
Java 454,451 15,328 26,909

the student model and the original model exceeds a preset
threshold value. The final student model, resulting from this
iterative process, will be preserved and employed as the
code encoder in our proposed framework.

By following this approach, we can select the suitable
teaching assistant model for different pre-trained models to
further improve the performance of the distilled model.

4 EXPERIMENTAL SETTINGS

4.1 Research Questions

In our evaluation, we focus on the following questions:

• RQ1: The effectiveness of our proposed framework
• RQ2: The effectiveness of our distillation approach
• RQ3: The influence of the model size to the perfor-

mance
• RQ4: The impact of different training strategy on the

performance with the same model size
• RQ5: The impact of the recall number of the code

candidates on the overall performance of SPENCER
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We undertake two experiments to address RQ1. In the
first experiment, we assess the efficacy of our proposed
framework. We compare the performance of the framework
with and without the model distillation strategy, alongside
the dual encoder, to validate whether the framework en-
hances code retrieval performance. In the second experi-
ment, we evaluate the reduction in inference time achieved
through model distillation technology in SPENCER. Specif-
ically, we compare the inference time of the original dual
encoder with that of the distilled dual encoder within
SPENCER.

To address RQ2, we conducted an experiment compar-
ing the performance of pre-trained models with and without
model distillation. Additionally, we performed an ablation
study on our distillation method, investigating the impact
of different loss functions on the distillation effect. Further-
more, we examined the effect of introducing the contrast
loss function used in the dual encoder into distillation on
model performance. Due to limited training resources, we
selected the dual encoder of the same size as shown in RQ1
as the baseline model for our experiments.

To address RQ3, we analyze the model’s performance
across various distillation sizes, spanning 12 layers, 9 layers,
6 layers, 3 layers, and 1 layer. Additionally, to evaluate the
effectiveness of the model distillation strategy in SPENCER,
corresponding to RQ4, we compare the performance among
the original model, a small model directly trained, and
a small model distilled using our strategy. Furthermore,
we conduct ablation experiments on the teaching assistant
selection part of the proposed distillation strategy to further
explore the impact of each module on overall performance.
Similar to RQ2, we also select the 3-layer model as our base-
line model for evaluation. To investigate RQ5, we examined
how the performance of SPENCER changes as the number
of recalls varies from 2 to 10.

4.2 Datasets

The dataset we utilized to evaluate the proposed framework
is initially from CodeBERT. CodeBERT selects the descrip-
tions and code snippets from CodeSearchNet. It makes
matched code snippets and descriptions as positive pairs
and makes the unmatched code snippets and descriptions
as negative pairs. We directly utilize the dataset from the
CodeBERT to train the cross-encoder. As for the training of
dual-encoder in our proposed framework, we reorganized
the dataset from CodeBERT. The reason why we reorganized
the dataset is the difference in training mechanism between
the dual-encoder and cross-encoder. Cross-encoder treats
the code retrieval task as the classification task and the
inputs are the pairs of code snippets and queries. On the
contrary, the dual-encoder treats the code retrieval task as
the data projection task which projects the code snippets
and queries into the same high dimensional space. Similar
code snippets and queries should be close to each other
and dissimilar code snippets and queries should be far from
each other. Due to the difference in mechanisms, the dual-
encoder only accepts the data from code modality or query
modality. To address this different data format requirement,
we only keep the positive pairs of code snippets and queries
and remove all the negative pairs from the dataset. The

reason we remove the negative pairs is that the training
of dual-encoder needs the label for the alignment of code
snippets and queries but negative pairs cannot provide such
labels. Table 1 shows the statistics of the datasets.

4.3 Baselines

Since the training of cross-encoder requires well initialized
parameters and the model cannot be converged well if we
train the cross-encoder from the scratch, we select four rep-
resentation pre-trained models to validate the effectiveness
of our proposed framework. Besides, we select two non pre-
trained models as our additional baselines. All the baselines
are shown below:

• CodeBERT [9] is a pre-trained model based on a
Transformer with 12 layers. It combines code snip-
pets and descriptions, converts them as token se-
quences, and utilizes them as the input of the model.

• GraphCodeBERT [7] is another pre-trained Trans-
former based model. Unlike CodeBERT which only
utilizes the token sequence as the input, GraphCode-
BERT also considers the data flow of code snippets
and utilizes it as the additional input.

• CodeT5 [17] is a pre-trained Transformer-based
model with both an encoder and a decoder. CodeT5
is pre-trained with three identifier-aware pre-training
tasks, which lead to the ability to recover masked
identifiers in the code. Since our focus is solely on
generating representation vectors for code retrieval,
we exclude the decoder component of CodeT5 from
our evaluation.

• UniXcoder [6] is a pre-trained model which utilizes
cross-modal contents including AST and code com-
ment to enhance code representation ability.

• CODEnn [5] is a non pre-trained model that extracts
features from method names, token sequences, and
API sequences, and fuses them for representation
learning.

• CRaDLe [4] is a non pre-trained model that learns
code features at the statement level using an atten-
tion mechanism. These features are then fused into
function-level representation vectors via RNN.

4.4 Metrics

R@k (recall at k) and MRR (mean reciprocal rank) are uti-
lized as the evaluation metrics to evaluate the performance
of our proposed framework. R@k is the metric to evaluate
whether the model can return the correct answer within top
K candidates. It is widely used to evaluate the performance
of the code retrieval models in previous research [18], [19],
[20], [21]. The definition of R@k is shown below:

R@k =
1

|Q|

Q∑
q=1

δ(FRankq ≤ k), (10)

where Q denotes the query set and FRankq is the rank of
the correct answer for query q. δ(Frankq ≤ k) returns 1 if
the correct result is within the top k returning results, other-
wise it returns 0. The higher R@k is, the better performance
the model has.
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MRR is a popular metric used in recommendation sys-
tems and it is also widely used to evaluate the performance
in the task of code retrieval [7], [9]:

MRR =
1

|Q|

Q∑
q=1

1

FRankq
(11)

Similar to R@k, a higher MRR indicates better performance.

4.5 Implementation Details
In our experiment, we fine-tuned the dual-encoder and
cross-encoder sourced from pre-trained models available
in the public repository1234. These original encoders are
based on the Transformer model, consisting of 12 layers
and 12 heads. The dimension of the output vectors from
the dual-encoder is 768. CodeBERT and GraphCodeBERT
are encode-only models and CodeT5 is an encoder-decoder
model. To ensure equitable comparison of experimental
results, we omitted the decoder of CodeT5 and exclusively
employed its encoder. This decision was made because
our task focuses solely on encoding code and queries into
representation vectors. In addition, we set the maximum
input length for our models as 512 and the dropout ratio
as 0.2. For model optimization, we maintained a consistent
learning rate of 1e-5 across all models. The optimization
process employed the AdamW algorithm [22]. We trained
our models on a server with Tesla A100 and we trained
both dual-encoders and cross-encoders for 8 epochs. The
training batch size we used is 16. An early stopping strategy
is adopted to avoid over-fitting for all models. The training
batch size for the model training is 16. During the training
of the dual encoder with contrastive learning, the negative
samples for a particular sample consist of the unmatched
codes and queries within the same training batch.

In each step of the distillation process, three layers were
eliminated. The hyperparameter T in our teaching assistant
selection algorithm was set to 0.01.

In our experiment, we partitioned the test dataset into
distinct search pools whose size is 1,000 for evaluation
purposes. The models were evaluated in each pool and the
average results from all the pools are reported in our paper.
Based on our experimental findings, we have discovered
that compressing all pre-trained models into 3 layers strikes
the best balance between performance and efficiency, with
a relative performance drop of within 1%. The default
configuration for the distilled models is compression into
3 layers, as outlined in the corresponding section.

5 EVALUATION

5.1 RQ1: The effectiveness of our proposed framework
Table 2 illustrates the experiment results of the overall
performance comparison of different encoders with differ-
ent pre-trained models. ModelDual represents the approach
which only adopts the dual-encoder for code retrieval.
ModelSPENCERnoDistill indicates the code retrieval approach

1. https://github.com/microsoft/CodeBERT/tree/master/CodeBERT
2. https://github.com/microsoft/CodeBERT/tree/master/GraphCod-

-eBERT
3. https://github.com/salesforce/CodeT5/tree/main/CodeT5
4. https://github.com/microsoft/CodeBERT/tree/master/UniXcoder

which adopts our proposed framework but the model dis-
tillation part is removed. ModelSPENCER represents the code
retrieval approach that adopts the complete version of our
proposed framework SPENCER.

From the experiment results in Table 2, we can find that
the performance improvement of ModelSPENCERnoDistill will
be affected by the selection of the pre-trained model. Specif-
ically, the performance improvement with the pre-trained
model named CodeT5 is around 200% as the improvement
with CodeBERT or GraphCodeBERT on the metric of R@1
on both datasets. Besides, compared to ModelSPENCERnoDistill,
we can find that ModelSPENCER can preserve most of the per-
formance. Specifically, ModelSPENCER can preserve more than
98% performance of ModelSPENCERnoDistill on all the metrics
with both datasets. Here we need to pay attention that the
performance of ModelSPENCER on the metric of R@5 is even
worse than the performance of ModelDual. The reason is that
the code candidates are recalled by the dual-encoder in our
proposed framework. Since we set the recall number as 5 in
our experiments and R@5 is a metric used to evaluate if the
correct answer is among the top 5 candidates, all of which
are retrieved by the dual encoder, the re-ranking by the cross
encoder of these candidates will not affect the results of
this metric. The distillation of the model will lead to the
loss of the performance so that the overall performance of
ModelSPENCER dropped on the metric R@5.

Another interesting finding is that the combination of a
dual encoder and a cross encoder can sometimes achieve
better performance than a pure cross encoder. For instance,
GraphCodeBERTSPENCER outperforms GraphCodeBERTcross on
the Java dataset. This improvement may be due to the
orthogonality between the dual encoder and the cross en-
coder. Samples that are difficult for the cross encoder to
distinguish may be filtered by the dual encoder during
the recall stage, allowing the cross encoder to make more
accurate predictions for the remaining candidates, thereby
enhancing overall performance.

From the experimental results, we observe that the per-
formance tendencies of the dual encoder and cross encoder
with UniXcoder differ from those of other pre-trained mod-
els. UniXcoder achieves the best performance with the dual
encoder but the worst with the cross encoder. We believe
this may be related to UniXcoder’s pre-training strategy.
UniXcoder employs contrastive learning during the pre-
training stage, and all downstream tasks in their released
code are also trained with contrastive learning. Therefore,
UniXcoder may excel at tasks related to representation
vector generation, but its performance in classification tasks
may be less effective.

Table 3 showcases the inference time costs associated
with the query encoder within our proposed framework
for the entire test dataset. Distilled refers to the inference
time cost of the distilled query encoder, while Original
refers to the inference time cost of the original query en-
coder. The experimental results reveal that our distillation
approach greatly diminishes the inference time of the query
encoder within our framework by approximately 70%. We
also conducted a t-test to compare the inference time cost
between the distilled encoder and the original encoder. p-
values for all the pre-trained models in both dataset were
much smaller than 0.0001, demonstrating a significant dif-
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TABLE 2
Results of overall performance comparison with different pre-trained models. The percentage of performance improvement is calculated based on

the performance of the dual encoder. ModelDual indicates the approach which only adopts the dual-encoder. ModelSPENCERnoDistill indicates the
approach which adopts SPENCER but the model distillation part is removed. ModelSPENCER indicates the approach which adopts the complete

version of SPENCER.

Model Python Java

R@1 R@3 R@5 MRR R@1 R@3 R@5 MRR

CODEnn 0.294 0.536 0.713 0.494 0.235 0.433 0.629 0.395
CRaDLe 0.573 0.765 0.821 0.691 0.471 0.652 0.717 0.581

CodeBERTDual 0.652 0.839 0.888 0.757 0.533 0.704 0.754 0.633
CodeBERTSPENCERnoDistill 0.714 (↑9.5%) 0.865 (↑3.1%) 0.888 (0.0%) 0.798 (↑5.4%) 0.575 (↑7.9%) 0.722 (↑2.6%) 0.754 (0.0%) 0.661 (↑4.4%)
CodeBERTSPENCER 0.710 (↑8.9%) 0.857 (↑2.1%) 0.879 (↓1.0%) 0.792 (↑4.6%) 0.569 (↑6.8%) 0.711 (↑1.3%) 0.742 (↓1.6%) 0.653 (↑3.2%)
CodeBERTCross 0.714 (↑9.5%) 0.866 (↑3.2%) 0.905 (↑1.9%) 0.800 (↑5.7%) 0.574 (↑7.7%) 0.727 (↑3.3%) 0.775 (↑2.8%) 0.667 (↑5.4%)

GraphCodeBERTDual 0.669 0.853 0.901 0.771 0.541 0.712 0.760 0.640
GraphCodeBERTSPENCERnoDistill 0.727 (↑8.7%) 0.875 (↑2.6%) 0.901 (0.0%) 0.809 (↑4.9%) 0.590 (↑9.1%) 0.750 (↑5.3%) 0.760 (0.0%) 0.671 (↑4.8%)
GraphCodeBERTSPENCER 0.721 (↑7.8%) 0.867 (↑1.6%) 0.891 (↓1.1%) 0.802 (↑4.0%) 0.582 (↑7.6%) 0.720 (↑1.1%) 0.749 (↓1.4%) 0.664 (↑3.8%)
GraphCodeBERTCross 0.734 (↑9.7%) 0.880(↑3.2%) 0.915 (↑1.6%) 0.815 (↑5.7%) 0.587 (↑8.5%) 0.736 (↑3.4%) 0.781 (↑2.8%) 0.674 (↑5.3%)

CodeT5Dual 0.655 0.842 0.892 0.760 0.500 0.681 0.737 0.608
CodeT5SPENCERnoDistill 0.757 (↑15.6%) 0.880 (↑4.5%) 0.892 (0.0%) 0.826 (↑8.7%) 0.587 (↑17.4%) 0.718 (↑5.4%) 0.737 (0.0%) 0.664 (↑9.2%)
CodeT5SPENCER 0.751 (↑14.7%) 0.870 (↑3.3%) 0.882 (↓1.1%) 0.819 (↑7.8%) 0.579 (↑15.8%) 0.707 (↑3.8%) 0.726 (↓1.5%) 0.656 (↑7.9%)
CodeT5Cross 0.755 (↑15.3%) 0.892 (↑5.9%) 0.923 (↑3.5%) 0.831 (↑9.3%) 0.590 (↑18.0%) 0.745 (↑9.4%) 0.791 (↑7.3%) 0.682 (↑12.2%)

UniXcoderDual 0.693 0.872 0.914 0.791 0.556 0.733 0.783 0.658
UniXcoderSPENCERnoDistill 0.736 (↑6.2%) 0.887 (↑1.7%) 0.914 (0.0%) 0.819 (↑3.5%) 0.608 (↑9.4%) 0.749 (↑2.2%) 0.783 (0.0%) 0.690 (↑4.9%)
UniXcoderSPENCER 0.729 (↑5.2%) 0.876 (↑0.5%) 0.901 (↓1.4%) 0.810 (↑2.4%) 0.598 (↑7.6%) 0.732 (↓0.1%) 0.760 (↓2.9%) 0.678 (↑3.0%)
UniXcoderCross 0.709 (↑2.3%) 0.863 (↓1.0%) 0.903 (↓1.2%) 0.796 (↑0.6%) 0.570 (↑2.5%) 0.725 (↓1.1%) 0.773 (↓1.3%) 0.664 (↑0.9%)

TABLE 3
Results of inference time cost comparison of the query encoder with

different pre-trained models.

Model Distilled Original Time Reduction P-value

CodeBERTPython 15.0s 52.2s 71.3% <0.0001
CodeBERTJava 12.4s 42.2s 70.6% <0.0001

GraphCodeBERTPython 14.2s 51.4s 72.4% <0.0001
GraphCodeBERTJava 12.4s 42.2s 70.6% <0.0001

CodeT5Python 22.0s 69.1s 68.2% <0.0001
CodeT5Java 14.7s 47.8s 69.2% <0.0001

UniXcoderPython 16.3s 52.8s 69.1% <0.0001
UniXcoderJava 12.8s 42.5s 69.9% <0.0001

ference in inference time cost between the two encoders.
These results demonstrate the effectiveness of our proposed
distillation methods in enhancing the model efficiency.

In summary, SPENCER can effectively improve the code
retrieval performance, in some cases, even surpass the per-
formance of a pure cross encoder. Besides, our proposed
model distillation approach can efficiently reduce the 70%
inference time of the query encoder inside our framework
while preserving more than 98% overall performance.

5.2 RQ2: The effectiveness of our distillation approach

In this section, we investigate the effectiveness of various
model distillation approaches for the dual-encoder within
our proposed framework. We explore four variants of the
model distillation methods. The first one, referred to as
ModelOriginal, represents the model without any distillation.
The second model, denoted as ModelSingle, incorporates
only the single modality loss, represented by Eq. 6, for

distillation. The third model, known as ModelDual, solely
employs the dual modality loss function, Eq. 7, for dis-
tillation. The fourth model, ModelSPENCER, adopts the loss
function specified in Eq. 8, which represents our proposed
distillation approach. Lastly, ModelSPENCER+Contra combines
our proposed distillation method with a contrastive loss
utilized in the training of original models, corresponding
to Eq. 9.

Table 4 presents the performance comparison results
of different pre-trained code retrieval models using these
model distillation approaches. Our distillation approach ex-
hibits the best performance across most metrics, confirming
the effectiveness of our proposed dual-encoder distillation
method. Interestingly, we observe that the performance of
the single-modality distillation is generally superior to the
dual-modality distillation in most experimental settings.
This suggests that the student model effectively learns
knowledge from the teacher query encoder by aligning
representation vectors to the teacher model, rather than
focusing on the relative positional relationship between
query and code modalities.

Surprisingly, we find that incorporating the contrastive
loss into the model distillation does not contribute to perfor-
mance improvement; instead, it harms the mode distillation
process. The contrastive loss aims to reduce the distance
between positive pairs of code and query while increasing
the distance between negative pairs, which can be regarded
as providing ground-truth labels during training. The rea-
son for its negative impact on our encoder’s distillation
performance is that the small model has limited ability
to construct a good distribution of representation vectors
in high-dimensional space. This loss interferes with the
learning of the teacher model by the distillation model.

We observe that UniXcoder is the only exception among
all the pre-trained models. The variant with contrastive
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TABLE 4
Results of the dual-encoder performance comparison of different pre-trained models with different model distillation approaches. The best results

are highlighted in bold font.

Model Python Java

R@1 R@3 R@5 MRR R@1 R@3 R@5 MRR

CodeBERTOriginal 0.652 0.839 0.888 0.757 0.533 0.704 0.754 0.633
CodeBERTSingle 0.625 (↓4.1%) 0.819 (↓2.4%) 0.876 (↓1.4%) 0.735 (↓2.9%) 0.509 (↓4.5%) 0.687 (↓2.4%) 0.740 (↓1.9%) 0.614 (↓3.0%)
CodeBERTDual 0.618 (↓5.2%) 0.815 (↓2.9%) 0.872 (↓1.8%) 0.730 (↓3.6%) 0.506 (↓5.1%) 0.686 (↓2.6%) 0.739 (↓2.0%) 0.612 (↓3.3%)
CodeBERTSPENCER 0.631 (↓3.2%) 0.824 (↓1.8%) 0.879 (↓1.0%) 0.740 (↓2.2%) 0.511 (↓4.1%) 0.689 (↓2.1%) 0.742 (↓1.6%) 0.615 (↓2.8%)
CodeBERTSPENCER+Contra 0.631 (↓3.2%) 0.823 (↓1.9%) 0.878 (↓1.1%) 0.741 (↓2.1%) 0.487 (↓8.6%) 0.669 (↓5.0%) 0.727 (↓3.6%) 0.596 (↓5.8%)

GraphCodeBERTOriginal 0.669 0.853 0.901 0.771 0.541 0.712 0.760 0.640
GraphCodeBERTSingle 0.642 (↓4.0%) 0.836 (↓2.0%) 0.889 (↓1.3%) 0.750 (↓2.7%) 0.515 (↓4.8%) 0.692 (↓2.8%) 0.744 (↓2.1%) 0.618 (↓3.4%)
GraphCodeBERTDual 0.635 (↓5.1%) 0.832 (↓2.5%) 0.886 (↓1.7%) 0.745 (↓3.4%) 0.510 (↓5.7%) 0.688 (↓3.4%) 0.740 (↓2.6%) 0.614 (↓4.1%)
GraphCodeBERTSPENCER 0.644 (↓3.7%) 0.839 (↓1.6%) 0.891 (↓1.1%) 0.753 (↓2.3%) 0.522 (↓3.5%) 0.697 (↓2.1%) 0.749 (↓1.4%) 0.624 (↓2.5%)
GraphCodeBERTSPENCER+Contra 0.641 (↓4.2%) 0.836 (↓2.0%) 0.889 (↓1.7%) 0.750 (↓2.7%) 0.513 (↓5.2%) 0.690 (↓3.1%) 0.745 (↓2.0%) 0.617 (↓3.6%)

CodeT5Original 0.655 0.842 0.892 0.760 0.500 0.681 0.737 0.608
CodeT5Single 0.632 (↓3.5%) 0.822 (↓2.4%) 0.878 (↓1.6%) 0.741 (↓2.5%) 0.480 (↓4.0%) 0.666 (↓2.2%) 0.725 (↓1.6%) 0.590 (↓3.0%)
CodeT5Dual 0.625 (↓4.6%) 0.820 (↓2.6%) 0.877 (↓1.7%) 0.736 (↓3.2%) 0.475 (↓5.0%) 0.661 (↓2.9%) 0.719 (↓2.4%) 0.586 (↓3.6%)
CodeT5SPENCER 0.639 (↓2.4%) 0.828 (↓1.7%) 0.882 (↓1.1%) 0.746 (↓1.8%) 0.480 (↓4.0%) 0.667 (↓2.1%) 0.726 (↓1.5%) 0.591 (↓2.8%)
CodeT5SPENCER+Contra 0.625 (↓4.6%) 0.821 (↓2.5%) 0.877 (↓1.7%) 0.735 (↓3.3%) 0.469 (↓6.2%) 0.660 (↓3.1%) 0.722 (↓2.0%) 0.583 (↓4.1%)

UnXicoderOriginal 0.693 0.872 0.914 0.791 0.556 0.733 0.783 0.658
UnXicoderSingle 0.664 (↓4.2%) 0.855 (↓1.9%) 0.902 (↓1.3%) 0.769 (↓2.8%) 0.525 (↓5.6%) 0.714 (↓2.6%) 0.768 (↓1.9%) 0.635 (↓3.5%)
UnXicoderDual 0.660 (↓4.8%) 0.851 (↓2.4%) 0.900 (↓1.6%) 0.766 (↓3.2%) 0.518 (↓6.8%) 0.705 (↓3.8%) 0.762 (↓2.7%) 0.628 (↓4.6%)
UnXicoderSPENCER 0.661 (↓4.6%) 0.853 (↓2.2%) 0.901 (↓1.4%) 0.766 (↓3.2%) 0.520 (↓6.5%) 0.708 (↓3.4%) 0.763 (↓2.6%) 0.629 (↓4.4%)
UnXicoderSPENCER+Contra 0.668 (↓2.7%) 0.856 (↓1.8%) 0.902 (↓1.3%) 0.772 (↓2.4%) 0.528 (↓5.0%) 0.716 (↓2.3%) 0.770 (↓1.7%) 0.637 (↓3.2%)

learning achieves the best performance among all the vari-
ants. The reasons for this may be similar to those introduced
in Section 5.1. UniXcoder incorporates contrastive learning
during its pre-training stage, making it sensitive to and
effective at handling contrastive learning, even when the
model size is reduced.

In summary, the distillation with single modality and
dual modality has the best performance among all the
variants. The introduction of constrastive loss into the
model distillation has a negative impact on the distillation
performance. UniXcoder is the only exception, potentially
due to its pre-training strategy.

5.3 RQ3: The influence of the model size to the perfor-
mance

In this research question, our goal is to investigate the
influence of model distillation on the fine sorting and rough
sorting performance of the query encoder. Specifically, we
want to determine whether the query encoder can accu-
rately return the correct code candidate as the top choice
and within the top 5 options after the model distillation. It’s
worth noting that although this trend can also be illustrated
by showcasing the overall performance of SPENCER, we
aim to present it more intuitively by focusing solely on
the query encoder’s performance. Figure 4 presents the
experimental results on the performance of various sizes of
distilled query encoders with different pre-trained models.
According to the experiment results, the impact of model
distillation on precise ranking is observed to be more
significant than on rough ranking. Specifically, there is a
substantial performance drop in the R@1 metric compared
to R@3 and R@5 for models with the same number of layers.
The drop in R@5 is only approximately 35% compared to

the drop in R@1. These experiment results show that our
model distillation method has limited impact on the top
K recall ability of the dual-encoder, which indicates that
model distillation is feasible for the dual-encoder within our
proposed framework.

Moreover, the performance drop for different pre-trained
models at the same compression ratio varies. For instance,
the performance drop with CodeT5 is much smaller than
other pre-trained models while the model is distilled from
12 layers to 9 layers. Furthermore, different pre-trained
models demonstrate distinct performance drop trends with
an increasing model compression ratio. For most distilled
models, the performance drop accelerates when distilling
to 3 layers and becomes considerably larger at 1 layer.
However, the performance drop of CodeT5 increases at a
slower rate compared to other pre-trained models as its
compression ratio increases. Another example is UniXcoder.
We observe that the performance drop of other pre-trained
models is quite small when the model size is compressed
from 12 layers to 9 layers. However, the performance drop
of UniXcoder is larger than that of other pre-trained models,
even though its model size is not reduced as much. While
the model sizes of these pre-trained models are similar,
there are substantial variations in their training datasets
and strategies. We attribute the differing performance drops
among these pre-trained models to these factors.

Finally, it’s worth noting that even for the same distilled
model, the performance varies across different datasets.
Specifically, we can find that the performance drop of Code-
BERT which is distilled to 3 layers on the Python dataset is
smaller than the performance drop of it on the Java dataset,
and the experiment results are opposite for the rest of the
distilled pre-trained models.
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TABLE 5
Results of the dual-encoder performance comparison of different pre-trained models with different model compression ratio.

Model Python Java

R@1 R@3 R@5 MRR R@1 R@3 R@5 MRR

CodeBERT12layers 0.652 0.839 0.888 0.757 0.533 0.704 0.754 0.633
CodeBERT9layers 0.648 (↓0.6%) 0.836 (↓0.4%) 0.886 (↓0.2%) 0.754 (↓0.4%) 0.524 (↓1.7%) 0.697 (↓1.0%) 0.749 (↓0.7%) 0.626 (↓1.1%)
CodeBERT6layers 0.642 (↓1.5%) 0.830 (↓1.1%) 0.882 (↓0.7%) 0.748 (↓1.2%) 0.522 (↓2.1%) 0.696 (↓1.1%) 0.748 (↓0.8%) 0.624 (↓1.4%)
CodeBERT3layers 0.631 (↓3.2%) 0.824 (↓1.8%) 0.879 (↓1.0%) 0.740 (↓2.2%) 0.511 (↓4.1%) 0.689 (↓2.1%) 0.742 (↓1.6%) 0.615 (↓2.8%)
CodeBERT1layer 0.581 (↓10.9%) 0.786 (↓6.3%) 0.848 (↓4.5%) 0.700 (↓7.5%) 0.469 (↓12.0%) 0.652 (↓7.4%) 0.709 (↓6.0%) 0.578 (↓8.7%)

GraphCodeBERT12layers 0.669 0.853 0.901 0.771 0.541 0.712 0.760 0.640
GraphCodeBERT9layers 0.665 (↓0.6%) 0.849 (↓0.5%) 0.898 (↓0.3%) 0.768 (↓0.4%) 0.535 (↓1.1%) 0.708 (↓0.6%) 0.757 (↓0.4%) 0.636 (↓0.6%)
GraphCodeBERT6layers 0.660 (↓1.3%) 0.845 (↓0.9%) 0.896 (↓0.6%) 0.764 (↓0.5%) 0.533 (↓1.5%) 0.706 (↓0.8%) 0.756 (↓0.5%) 0.634 (↓0.9%)
GraphCodeBERT3layers 0.641 (↓4.2%) 0.836 (↓2.0%) 0.889 (↓1.3%) 0.750 (↓2.7%) 0.516 (↓4.6%) 0.691 (↓2.9%) 0.743 (↓2.2%) 0.619 (↓3.3%)
GraphCodeBERT1layer 0.607 (↓9.3%) 0.810 (↓5.0%) 0.867 (↓3.8%) 0.722 (↓6.4%) 0.483 (↓10.7%) 0.662 (↓7.0%) 0.719 (↓5.4%) 0.589 (↓8.0%)

CodeT512layers 0.655 0.842 0.892 0.760 0.500 0.681 0.737 0.608
CodeT59layers 0.654 (↓0.2%) 0.840 (↓0.2%) 0.890 (↓0.2%) 0.758 (↓0.3%) 0.497 (↓0.6%) 0.678 (↓0.4%) 0.735 (↓0.3%) 0.606 (↓0.3%)
CodeT56layers 0.650 (↓0.8%) 0.835 (↓0.8%) 0.888 (↓0.4%) 0.756 (↓0.5%) 0.491 (↓1.8%) 0.673 (↓1.2%) 0.733 (↓0.5%) 0.600 (↓1.3%)
CodeT53layers 0.639 (↓2.4%) 0.828 (↓1.7%) 0.882 (↓1.1%) 0.746 (↓1.8%) 0.480 (↓4.0%) 0.667 (↓2.1%) 0.726 (↓1.5%) 0.591 (↓2.8%)
CodeT51layer 0.597 (↓8.9%) 0.800 (↓5.0%) 0.858 (↓3.8%) 0.713 (↓6.2%) 0.466 (↓6.8%) 0.654 (↓4.0%) 0.717 (↓2.7%) 0.578 (↓4.9%)

UnXicoder12layers 0.693 0.872 0.914 0.791 0.556 0.733 0.783 0.658
UnXicoder9layers 0.683 (↓1.4%) 0.864 (↓0.9%) 0.911 (↓0.3%) 0.783 (↓1.0%) 0.544 (↓2.2%) 0.728 (↓0.7%) 0.779 (↓0.5%) 0.649 (↓1.4%)
UnXicoder6layers 0.675 (↓2.6%) 0.860 (↓1.1%) 0.908 (↓0.7%) 0.777 (↓1.8%) 0.535 (↓3.8%) 0.720 (↓1.8%) 0.774 (↓1.1%) 0.643 (↓2.3%)
UnXicoder3layers 0.661 (↓4.6%) 0.853 (↓2.2%) 0.901 (↓1.4%) 0.766 (↓3.2%) 0.520 (↓6.5%) 0.708 (↓3.4%) 0.763 (↓2.6%) 0.629 (↓4.4%)
UnXicoder1layer 0.634 (↓8.5%) 0.832 (↓4.6%) 0.888 (↓2.8%) 0.745 (↓5.8%) 0.491 (↓11.7%) 0.682 (↓7.0%) 0.740 (↓5.5%) 0.604 (↓8.2%)

SPTCode12layers 0.538 0.750 0.818 0.663 0.408 0.600 0.667 0.525
SPTCode9layers 0.512 (↓4.8%) 0.728 (↓2.9%) 0.797 (↓2.6%) 0.640 (↓3.5%) 0.408 (0.0%) 0.599 (↓0.2%) 0.667 (0.0%) 0.525 (0.0%)
SPTCode6layers 0.512 (↓4.8%) 0.727 (↓3.1%) 0.798 (↓2.4%) 0.639 (↓3.6%) 0.398 (↓2.5%) 0.589 (↓1.8%) 0.659 (↓1.2%) 0.515 (↓1.9%)
SPTCode3layers 0.506 (↓5.9%) 0.720 (↓4.0%) 0.793 (↓3.1%) 0.635 (↓4.2%) 0.396 (↓2.9%) 0.586 (↓2.3%) 0.658 (↓1.3%) 0.515 (↓1.9%)
SPTCode1layer 0.506 (↓5.9%) 0.719 (↓4.1%) 0.793 (↓3.1%) 0.635 (↓4.2%) 0.394 (↓3.4%) 0.585 (↓2.5%) 0.656 (↓1.6%) 0.514 (↓2.1%)

In summary, the extent of performance degradation dur-
ing model distillation varies greatly based on the choice of
mode compression ratio, the pre-trained models, and the
datasets.

5.4 RQ4: The impact of different training strategy to the
performance with the same model size
Table 6 presents the experiment results for evaluating the
performance of the dual encoder under different training
strategies. The four models compared are ModelOriginal,
which represents the original query model with 12 layers
trained with the original code encoder; ModelDirectTrain,
denoting the query model with 3 layers directly trained with
the original code encoder; ModelDirectDistill, representing
the query encoder with 3 layers directly distilled from
the original query encoder; and ModelSPENCER, which is the
query encoder distilled from the original query encoder
using our proposed strategy. By comparing the perfor-
mance of the ModelDirectTrain with ModelDirectDistill, we
can evaluate the effectiveness of the proposed model dis-
tillation strategy. Similarly, by comparing the performance
of ModelDirectDistill with ModelSPENCER, we can assess the
effectiveness of our proposed TA selection strategy.

Based on the experiment results, we observe that
both ModelDirectDistill and ModelSPENCER outperform
ModelDirectTrain across all metrics and pre-trained models.
This demonstrates the effectiveness of the model distillation.
Additionally, our proposed TA selection strategy shows the
capability to further enhance the performance of directly
distilled models based on GraphCodeBERT. Specifically, the
performance of GraphCodeBERTSPENCER is higher than that

of GraphCodeBERTDirectDistill on both Python and Java
datasets. Interestingly, the TA selection strategy has no im-
pact on the rest pre-trained models, indicating that involv-
ing a teaching assistant in the model distillation process is
unnecessary for these models. These results suggest that the
necessity of a teaching assistant during model distillation
depends on different pre-trained models.

In conclusion, our proposed distillation strategy can out-
perform both direct training of a small model and direct
distillation strategy. Moreover, the selection of a teaching
assistant model depends on the specific pre-trained mod-
els, as not all of them require a teaching assistant during
the distillation process. This highlights the effectiveness
and adaptability of our approach, demonstrating its po-
tential to achieve superior performance.

5.5 RQ5: The impact of the recall number of the code
candidates to the overall performance of SPENCER

In this section, our aim is to explore the specific trend of
performance improvement with increasing recall numbers
and identify the point at which additional recalls start to
have a diminishing impact on performance. In this experi-
ment, we deliberately restricted the range of recall number
to between 2 and 10 to assess the impact of varying recall
numbers on overall performance. Figure 5 displays the
experiment results about the impact of the recall number
of candidates on the overall performance of our proposed
SPENCER across various pre-trained models. SPENCER
in Figure 5 represents our proposed framework, while
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(a) Results on the metric Acc1 in Python dataset (b) Results on the metric Acc5 in Python dataset (c) Results on the metric Acc10 in Python dataset

(d) Results on the metric MRR in Python dataset (e) Results on the metric Acc1 in Java dataset (f) Results on the metric Acc5 in Java dataset

(g) Results on the metric Acc10 in Java dataset (h) Results on the metric MRR in Java dataset

Fig. 4. Results of the dual-encoder performance comparison of different pre-trained models with different model compression ratio

SPENCER-noDistill refers to our proposed framework with-
out model distillation. The experimental results indicate that
the overall performance increase of our SPENCER varies
across different pre-trained models as the recall number
increases. Specifically, we observe a significant boost in our
SPENCER’s overall performance when the recall number is
increased from 2 to 5 for the CodeBERT and GraphCode-
BERT. This performance increase tends to stabilize beyond a
recall number of 5. For UniXcoder, the overall performance
decreases as the recall number increases from 5 to 10. This
is because its cross encoder’s performance is not adequate
to effectively re-rank the recalled candidates when the recall
number is large, which can be referred in Table 2. However,
the performance improvement continues with increasing
recall numbers for the pre-trained model named CodeT5.
Furthermore, it’s worth noting that the impact of recall
number on the overall performance of SPENCER on the
MRR metric is more substantial compared to the R@1 metric.
While R@1 exhibits only marginal growth as the candidate
number exceeds 5, the overall performance on MRR con-
tinues to be improved with higher recall numbers. These

results indicate that although sometimes the dual-encoder
fails to return the precise code snippet that the cross-encoder
ranks as the top 1 answer, it does have the capability to
retrieve accurate code snippets that can be ranked as sub-
optimal answers by the cross-encoder when the recalled
candidates number from dual-encoder increases.

In addition, we observe that the performance gap be-
tween SPENCER and SPENCER-noDistill decreases as the
recall number increases. According to Table 2, the perfor-
mance drop for the distilled model in R@k diminishes as
k becomes larger. Consequently, the performance difference
between the original encoder and the distilled encoder nar-
rows with an increasing recall number, making the perfor-
mance of SPENCER and SPENCER-noDistill more similar.
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TABLE 6
Results of distillated dual-encoder performance comparison of different pre-trained models with different training strategy. The best results are

highlighted in bold font.

Model Python Java

R@1 R@3 R@5 MRR R@1 R@3 R@5 MRR

CodeBERTOriginal 0.652 0.839 0.888 0.757 0.533 0.704 0.754 0.633
CodeBERTDirectTrain 0.591 (↓9.4%) 0.799 (↓4.7%) 0.851 (↓4.2%) 0.706 (↓6.7%) 0.458 (↓14.1%) 0.659 (↓6.4%) 0.705 (↓6.5%) 0.569 (↓10.1%)
CodeBERTDirectDistill 0.631 (↓3.2%) 0.824 (↓1.8%) 0.879 (↓1.0%) 0.740 (↓2.2%) 0.511 (↓4.1%) 0.689 (↓2.1%) 0.742 (↓1.6%) 0.615 (↓2.8%)
CodeBERTSPENCER 0.631 (↓3.2%) 0.824 (↓1.8%) 0.879 (↓1.0%) 0.740 (↓2.2%) 0.511 (↓4.1%) 0.689 (↓2.1%) 0.742 (↓1.6%) 0.615 (↓2.8%)

GraphCodeBERTOriginal 0.669 0.853 0.901 0.771 0.541 0.712 0.760 0.640
GraphCodeBERTDirectTrain 0.609 (↓9.0%) 0.809 (↓5.2%) 0.866 (↓3.9%) 0.722 (↓6.4%) 0.471 (↓12.9%) 0.659 (↓7.4%) 0.718 (↓5.5%) 0.583 (↓8.9%)
GraphCodeBERTDirectDistill 0.641 (↓4.2%) 0.836 (↓2.0%) 0.889 (↓1.3%) 0.750 (↓2.7%) 0.516 (↓4.6%) 0.691 (↓2.9%) 0.743 (↓2.2%) 0.619 (↓3.3%)
GraphCodeBERTSPENCER 0.644 (↓3.7%) 0.839 (↓1.6%) 0.891 (↓1.1%) 0.753 (↓2.3%) 0.522 (↓3.5%) 0.697 (↓2.1%) 0.749 (↓1.4%) 0.624 (↓2.5%)

CodeT5Original 0.655 0.842 0.892 0.760 0.500 0.681 0.737 0.608
CodeT5DirectTrain 0.622 (↓5.0%) 0.817 (↓3.0%) 0.872 (↓2.2%) 0.732 (↓3.7%) 0.446 (↓10.8%) 0.633 (↓7.0%) 0.696 (↓5.6%) 0.559 (↓8.1%)
CodeT5DirectDistill 0.639 (↓2.4%) 0.828 (↓1.7%) 0.882 (↓1.1%) 0.746 (↓1.8%) 0.480 (↓4.0%) 0.667 (↓2.1%) 0.726 (↓1.5%) 0.591 (↓2.8%)
CodeT5SPENCER 0.639 (↓2.4%) 0.828 (↓1.7%) 0.882 (↓1.1%) 0.746 (↓1.8%) 0.480 (↓4.0%) 0.667 (↓2.1%) 0.726 (↓1.5%) 0.591 (↓2.8%)

UniXcoderOriginal 0.693 0.872 0.914 0.791 0.556 0.733 0.783 0.658
UniXcoderDirectTrain 0.662 (↓5.0%) 0.855 (↓3.0%) 0.904 (↓2.2%) 0.768 (↓3.7%) 0.513 (↓7.8%) 0.704 (↓4.0%) 0.761 (↓2.8%) 0.624 (↓5.2%)
UniXcoderDirectDistill 0.661 (↓4.6%) 0.853 (↓2.2%) 0.901 (↓1.4%) 0.766 (↓3.2%) 0.520 (↓6.5%) 0.708 (↓3.4%) 0.763 (↓2.6%) 0.629 (↓4.4%)
UniXcoderSPENCER 0.661 (↓4.6%) 0.853 (↓2.2%) 0.901 (↓1.4%) 0.766 (↓3.2%) 0.520 (↓6.5%) 0.708 (↓3.4%) 0.763 (↓2.6%) 0.629 (↓4.4%)

In conclusion, our proposed framework’s overall perfor-
mance exhibits steady improvement as the number of
recall candidates from the dual-encoder increases. Nev-
ertheless, the extent of this performance improvement
depends on the pre-trained models we have adopted in
our framework. Furthermore, it is noteworthy that the
increase in the number of recalls has a more pronounced
effect on the overall performance of SPENCER on the MRR
metric compared to the R@1 metric.

6 DISCUSSION

In this section, we will discuss two aspects: the training cost
associated with using a teaching assistant during model dis-
tillation and the user’s tolerance for sacrificing performance
in favor of search efficiency.

Firstly, we will discuss the extra training cost incurred
with a teaching assistant model during distillation. The
extent of performance degradation due to model size reduc-
tion is uncertain, requiring multiple attempts to determine
the optimal size for the distilled model. This makes it diffi-
cult to quantify the training cost with a teaching assistant
model compared to without one. However, if we distill
the model step by step, the training cost with a teaching
assistant model is roughly twice as much as it is without
one. It is important to note that once the code retrieval
model is deployed, no additional training is required, which
means one training ensures long-term usage. Therefore,
such an extra training cost can be acceptable if the model
performance can be improved.

To understand users’ tolerance for performance drops
in code retrieval tools while improving efficiency, we con-
ducted a study with 15 participants: 5 data analysts, 2
students, and 8 developers. Among them, six have 5 to 10
years of programming experience, seven have 3 to 5 years,
and the remaining two have 1 to 3 years. All participants
frequently use Python; nine regularly use C/C++, five often
use Java, and one regularly uses C#.

Figure 6 illustrates the responses of our participants to
our questionnaire. Utilizing a scale ranging from 1 to 5
in Figures 6 (a) to (f), we gauged participants’ agreement
with our queries, where 1 indicated strong disagreement
and 5 represented strong agreement. Examining Figure 6
(a), it is evident that only one participant perceives code
retrieval as unimportant, while the remainder consider it
crucial. Further analysis of Figures 6 (b) and (c) reveals that
approximately two-thirds of participants frequently utilize
code retrieval in their daily tasks and agree that program-
ming would become laborious without it. These findings
underscore the significance of code retrieval for developers.

Contrary to our expectations, participants perceive the
deployment of the code retrieval tool on the internal net-
work as more crucial than its deployment on the public
network, as indicated by Figure 6 (d) and Figure 6 (e).
Furthermore, participants consider local deployment of the
code retrieval tool to be highly significant, as evidenced in
Figure 6 (f). Given that the performance of hardware on
internal networks and users’ native machines is typically not
optimal, deploying the code retrieval tool on these devices
may encounter efficiency challenges.

Figure 6 (g) presents users’ expectations regarding the
maximum latency of code retrieval tools. The data indicate
a unanimous preference for latencies under 5 seconds, with
over half of the participants advocating for even swifter
responses, ideally under 2 seconds. This underscores the
considerable emphasis placed by users on the efficiency of
code retrieval systems. Additionally, Figure 6 delves into
users’ willingness to accept a relative performance decrease
in exchange for efficiency enhancements. Surprisingly, many
participants exhibit a notable tolerance for performance
dips. More than half of the respondents indicate a willing-
ness to endure a 20% relative performance decrease, while
only one participant insists on a ceiling of no more than a
3% decline.
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(a) Results for CodeBERT in Python (b) Results for CodeBERT in Java (c) Results for GraphCodeBERT in Python

(d) Results for GraphCodeBERT in Java (e) Results for CodeT5 in Python (f) Results for CodeT5 in Java

(g) Results for UniXcoder in Python (h) Results for UniXcoder in Java

Fig. 5. Overall performance comparison between SPENCER with different number of recall candidates based on different pre-trained models

7 THREATS TO VALIDITY

After careful analysis, we have identified several potential
threats to the validity of our study.

7.1 Threats to External Validity

We have chosen Python and Java datasets to evaluate the
efficiency of our proposed framework, taking into account
training costs. Nonetheless, it is essential to acknowledge
that the performance of our framework might vary across
different programming languages.

We followed previous works [6], [7], [9] in using Code-
SearchNet as the testing dataset. Although their experi-
mental results indicated similar performance trends across
the CodeSearchNet, AdvTest, and CosQA datasets, there
remains a risk of data leakage, which could render our
experimental results unreliable.

Furthermore, we deliberately limit our choice to three
pre-trained models in our proposed framework, taking into
account the constraints of experimental costs. It is possible
that the performance improvement of our proposed frame-
work is not so significant or the distillation approaches
inside our framework will have a higher performance loss

when we adopt other pre-trained models as the base model
in our framework.

Finally, we assess the presented approach solely utilizing
the accuracy and Mean Reciprocal Rank (MRR) metrics in
the comprehensive performance experiment. Nevertheless,
it’s important to note that the overall efficacy of our pro-
posed framework might exhibit variations when considered
through different metrics.

7.2 Threats to Internal Validity
In this study, we maintain consistency by utilizing the
identical hyperparameters as CodeBERT for all the pre-
trained models. While we acknowledge that variations in
hyperparameters could potentially affect overall model per-
formance, we refrained from exploring such influences due
to the high costs associated with fine-tuning the models.
For example, the training batch size is a very important
hyperparameter for the dual-encoder training, since we
adopt the contrastive loss to train the dual-encoder and
previous research shows that the increase of training batch
size can improve the performance. Nevertheless, we have
omitted an exploration of the impact of the training batch
size on the dual-encoder’s behavior.
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(a) Results from the questionnaire on the importance
of code retrieval

(b) Results from the questionnaire on the frequency
of code retrieval usage by users

(c) Results from the questionnaire regarding whether
users believe code retrieval can improve work effi-
ciency

(d) Results from the questionnaire on user accep-
tance of deploying code retrieval tools on public net-
works

(e) Results from the questionnaire on user accep-
tance of deploying code retrieval tools on internal net-
works

(f) Results from the questionnaire on user acceptance
of deploying code retrieval tools locally (on users’ na-
tive machines)

(g) Results from the questionnaire regarding the max-
imum latency users anticipate for code retrieval to
return results

(h) Results from the questionnaire regarding the max-
imum acceptable performance drop users can tolerate
in exchange for improved code retrieval efficiency

Fig. 6. Results from the questionnaire about users’ perspectives on code retrieval

8 RELATED WORK

8.1 Code Retrieval
In this subsection, we briefly introduce the deep learning-
based code retrieval approaches, which are classified into
non pre-training based approaches and pre-training based
approaches.

8.1.1 Non pre-training approaches
Sachdev et al. [23] carry out the techniques on natural
language processing directly to the code area and investi-
gate the performance of techniques including wording em-
bedding [24], TF-IDF [25] weighting, and high-dimensional
vector similarity search [26] in the task of code retrieval.
Cambronero et al. [27] evaluate the performance of super-
vised and unsupervised techniques in the neural networks
and demonstrate the effectiveness of the supervised training
in the code retrieval task. Gu et al. [5] extract the code
tokens, method name tokens, and API sequences from the
original code at first. These features will be embedded into
the feature vectors individually and finally fused into a
single representation vectors for the given code. Husain
et al. [28] construct an open-source dataset for the code

retrieval and find that the self-attention model achieves
the best performance among all the models through their
evaluation. Yao et al. [29] adopt reinforcement learning to
generate the code annotation at first and such code annota-
tion can help the code retrieval model to better distinguish
the relevant code snippets from other similar code. Gu et
al. [4] extract the program dependency graph from the given
code and convert the graph into the relationship matrix. The
generated matrix will be concatenated with the statement-
level representation vectors and fed into long short-term
memory (LSTM) networks to generate function-level rep-
resentation vector.

8.1.2 Pre-training approaches
Inspired by the pre-training models in natural language
processing, Feng et al. [9] proposed a bimodal pre-trained
model with Transformer-based neural architecture, which
is named CodeBERT. CodeBERT is trained with the pre-
training task of replaced token detection. Later, Guo et al. [7]
considered the inherent structure of code and proposed
a pre-trained model named GraphCodeBERT. GraphCode-
BERT is trained with the extra information of data flow. To
address the problem that previous pre-training models are
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sensitive to the source code edits, Jain et al. [30] pre-trained
ContrCode to identify the functionally similar variants
among non-equivalent distractors. Ahmad [31] proposed
a sequence to sequence pre-trained which trained via de-
noising autoencoding. Unlike previous pre-training models
which only contain the encoder, Wang et al. [17] proposed
a unified pre-trained encoder-decoder Transformer model
named CodeT5. CodeT5 is trained with the identifier-aware
pre-training task and such a task enables the model to distin-
guish the code tokens belonging to identifiers and recover
the masked identifiers. Similarly, Niu et al. [15] proposed
SPT-Code with three pre-training tasks which enable SPT-
Code to learn knowledge of source code, the corresponding
code structure, and a natural language description of the
code without relying on any bilingual corpus. To further
involve symbolic and syntactic properties of source code
into the pre-training model, Wang et al. [32] proposed
SyncoBERT trained with two novel pre-training objectives
which are Identifier Prediction and AST Edge Prediction.
To address the problem that the encoder-decoder frame-
work is sub-optimal for auto-regressive tasks, Guo et al. [6]
proposed a unified cross-modal pre-trained model named
UniXcoder. To control the behavior of the model, UniXcoder
utilizes mask attention matrices with prefix adapters. Bui
et al. [33] proposed a self-supervised contrastive learning
framework named Corder, which can learn to distinguish
similar and dissimilar code snippets. Since code retrieval
is a critical downstream task in code intelligence, all the
aforementioned pre-trained models have been assessed in
this task. To enhance the specific code retrieval performance
of pre-trained models, Shi et al. [34] propose a technique
involving soft data augmentation and contrastive learning
for the pre-trained model fine-tuning. To improve the code
retrieval performance of the pre-trained models in cross-
domain scenarios, Fan et al. [35] introduce synthetic data
generation through pseudo-labeling and train pre-trained
models using these sampled synthetic data. Liu et al. [36]
observe a significant drop in code retrieval performance
of current pre-trained models when the variables inside
the code snippets are renamed. To address this issue and
improve model robustness, they design nine data augmen-
tation operators to create diverse variants and train the
models using contrastive learning.

In this paper, we have chosen four representative pre-
trained models—CodeBERT, GraphCodeBERT, CodeT5, and
Unixcoder—and utilized the standard contrastive learning
technique named SimCSE [14] as our baselines for evalua-
tion.

8.2 Knowledge Distillation

The technology of knowledge distillation aims to reduce
the model parameters while preserving most of the perfor-
mance of the original model by making the small model
learn the output distribution from the large model. Such
technology has attracted a large number of researchers in
recent years. Hinton et al. [37] first proposed the concept of
knowledge distillation. Li et al. proposed a mimic method
that can map the features from the small network onto
the same dimension of the large network for knowledge
distillation. Tang et al. [38] distillated a Bi-LSTM model

from BERT [39] for the task of paraphrasing, natural lan-
guage inference, and sentiment classification. Romero et
al. [40] adopted a deeper and thinner student network to
learn the knowledge from the teacher network and achieve
a better performance with fewer parameters on CIFAR-
10. To further improve the efficiency of search model in
the recommendation system, Tang et al. [41] proposed a
knowledge distillation technique to train a student model
by learning the ranking knowledge of documents/items
from both the training data and teacher model. The stu-
dent model can achieve a comparable performance as the
teacher model with a more efficient online inference time.
Zhang et al. [42] proposed a deep mutual learning (DML)
strategy which makes the multiple student models to learn
collaboratively and teach each other during the training
process. The experiment results show that the mutual learn-
ing of many student models outperforms distillation from
a teacher model. Rather than training a smaller student
model from the large teacher model, Tommaso et al. [43]
trained student models which are parameterized identically
to the teachers models and they found that the student
models outperform their teachers significantly on both com-
puter vision and language modeling tasks. To avoid the
full training of a large model, Li et al. [44] proposed a
online knowledge distillation approach that acquires the
predicted heatmaps from the trained multi-branch network
and assemble these heatmaps as the target heatmaps to
teach each branch in reverse. Shi et al. [45] were the first
to propose distilling existing code pre-trained models into a
3 MB format for tasks like vulnerability prediction and clone
detection, which are primarily classification tasks. While
their focus was on model distillation for these classification
tasks, our paper aims to generate representation vectors
for code retrieval—a more challenging objective than tra-
ditional classification tasks, and one that has not yet been
attempted in the field of software engineering. However,
its potential application in tasks involving the generation
of representation vectors, such as the code retrieval task,
remains relatively unexplored.

9 CONCLUSION

In this paper, we introduce a framework that seamlessly
integrates both dual-encoder and cross-encoder for code
retrieval tasks. Additionally, we present an innovative ap-
proach to distill the query encoder model which can im-
prove the inference efficiency of the query encoder while
preserving most of its performance. To further elevate the
performance of these distilled models while maintaining
consistent model sizes, we propose a novel teaching as-
sistant selection strategy for the distillation process. Our
experimental results show the effectiveness of our proposed
framework. Notably, our model distillation approach suc-
ceeds in reducing the inference time of the query encoder
within our framework by approximately 70% while preserv-
ing over 98% of the overall performance.

In the future, our focus will be on investigating methods
to further reduce the inference time of the query encoder
while enhancing the overall performance of this framework.
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